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 , where 0p   is an 

integer and kb  are arbitrary complex numbers, is considered in the space S  of the 
polynomials with complex coefficients or more general of functions analytic around the 
origin. A power series description of the commutant of M  was given by the author in 
Hristova (1991) and the question about the minimal commutativity (in the sense of Raichinov 
(1979)) of M  was also discussed. This paper is a follow-up of previous research and offers 
various cases in which the pointwise spectrum of the operators of the commutant can be 

described.
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Introduction

let us first note that the spectral theory of the operators is important not only for 
mathematics but also for other fields of science such as the quantum physics, for 

instance, as for every quantity there is a linear operator such that its spectrum is in fact the 
set of the possible measurable values.

Here S  will denote the space of the polynomials of the complex variable  or in 
general the space of functions analytic around the origin. We will consider the general operator

         
 

- arbitrary, (1)

which is obviously a generalization of many operators of the integration type. Particular 

cases of the general operator have been investigated by many mathematicians but only a 

small part of the available publications is included in the references of this paper.
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Some important particular cases include:

 - the operator of integration 
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 - the operator for multiplication by a power ( )pz y z  ( 1kb  )

 - the Hardy-Littlewood operator 
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 - the generalized Hardy-Littlewood operator 
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 -  others.
It is suitable to represent the action of the operator M  on a single power kz :

 - arbitrary.  (2)  

  In fact, we can also use the short representation 

                                                   , where                      
       

,              - arbitrary.  (3)

The following definitions should be taken into consideration:

Definition 1. It is assumed that a continuous linear operator L  commutes with a fixed 
operator M , if LM ML . The set of all such operators is called the commutant of M  
and will be denoted by MC .

Definition 2. It is assumed that a continuous linear operator T  is generated by an 

operator M , if T  is a polynomial of M , i.e. 
0

n
n

n
T d M





  , . The set of all 

operators generated by M  will be denoted by MG .

It is clear that every operator T  which is generated by M , i.e. MT G  also commutes 

with M , i.e. MT C , hence M MG C . The opposite inclusion M MG C  is, in 

general, not true. Therefore the following definition is natural:

Definition 3. [Raichinov (1979)] An operator M  is called minimally commutative if 

M MG C , i.e. if the commutant MC  consists only of operators T  generated by M  

and hence if M MC G .

This paper draws first on the results from our previous paper (1991), without any proof, 
about the description of the commutant MC  of the operator M  defined by (1), (2),or (3), 
and the results about the minimal commutativity of M  in the sense of Raichinov (1979). 
Then different cases are provided, in which the pointwise spectrum of the operators of the 
commutant can be described.
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Spectrum of the Generated by M  Operators

First the case is considered, when 1p  , i.e the operator M  increases the powers.

Theorem 1. The pointwise spectrum of the operator M  with 1p   and the operators 
from MG , i.e. generated by M , is the empty set.

Proof: In order to describe the pointwise spectrum of the generated by M  operators, it 

is enough to find the values ,          for which the equation

1 2
l mc M y c M y y  , , 1 2| | | | 0c c  ,  (4)

has a nontrivial solution 0y  .

Let the power expansion of y  be . By (2)

1 1
( 1)

k p k lpl k l k l
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k mpm k

k k p k m pM z b b b z 
     and the equation (4) becomes

...... 1 2( 1) ( 1)
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We have to solve the equation (5) for the coefficients 

Let us suppose first that 0   and l m . Now compare the coefficients of the equal 

powers on both sides. We will describe the way of solving the infinite system without writing 

down the calculations. The system has to be divided into groups consisting of lp equations 

each. The first group for 0 k lp   has zero coefficients on the left, therefore 0ka   

for 0,1, , 1k lp  . Substituting these zero values into the left hand side of the next 

group of equations, they appear in the first sum and partially in the second (let us remind 

that l m ). Then we get that 0ka   for , 1, ,2 1k lp lp mp   , and so on to 

infinity. This means that in the case 0   the equation (4) has only the identically zero 

solution 0y  .

In the case 0   the right hand side is zero. Using the condition l m , we can again 

solve the system by dividing it into groups and it also has only the solution 0y  .

Combining the above considerations for 0   and 0  , it follows that for every 

 the system (5) has only the identically zero solution 0y  , i.e. the resolvent set 

of every operator generated by M is the whole complex plane C , therefore the pointwise 

spectrum is the empty set.        



Articles

110 Economic Alternatives, Issue 1, 2013

Commutant Operators’ Pointwise Spectrum

Spectrum of the Operators of the Commutant of M  in the Case 1p 

We start with the case 1p   and will provide first the description of the commutant 

MC  from our paper Hristova (1991), though it is now modified so that the equal powers are 
gathered at one place:

Theorem 2. [Hristova (1991)] If 1p  , a continuous linear operator :L S S  
commutes with the operator M , defined by (1), (2), or (3), if and only if it has the form

     1
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where 
1 (0)
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k dz
  and the complex numbers ,k mc  can be arbitrarily chosen for 

indices 0 1k p    and 0,1,2,m  , but such that the power series are convergent, 
if S  is the space of the functions analytic around the origin.

Theorem 3. [Hristova (1991)] If 1p  , the general operator M , defined by (1), (2), or 
(3), is minimally commutative in the sense of Raichinov (1979) if and only if 1p  .

At this stage a theorem can be formulated about the pointwise spectrum in the case 1p  :

Theorem 4. In the case of minimal commutativity of the operator M , defined by (1), 
(2), or (3), i.e. if 1p  , the pointwise spectrum of an operator L  of the commutant MC  
of M  consists of only one complex number [ (1)](0)L  .

Proof: For 1p   the description (6) from Theorem 2 of any operator ML C  becomes

      1
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Let the operator ML C  be arbitrarily fixed. We will find the eigenvalues of L , i.e. 

such , for which the equation ( ) ( )Ly z y z  (8)

has a nontrivial solution 
0
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m

m
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
  . The infinite system obtained by equating 

the coefficients of the equal powers in (8) is

    

         (9)  

  

Let us check first that 0,0c   is in the spectrum of L . From the first equation 0a  
can be chosen arbitrarily, in particular different from zero, which suggests that a nontrivial 
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solution 0y   exists, i.e. the spectrum of L  contains at least the number 0,0c  . We will 
show now that no other numbers are in the spectrum of L . If 0,0c  , then consecutively 
solving the equations of the system (9) we get 0 0a  , 1 0a  , 2 0a  , etc., i.e. in this 
case the equation (8) has only the trivial solution 0y   and therefore the spectrum of L  
consists of only one complex number 0,0 [ (1)](0)c L   .           

Let us continue now by analyzing different cases which are not included in Theorem 4.
First we suppose that 2p  . We will show that in this case it is possible that commutant 

MC  contains not only operators with nonempty spectrum but also with an empty one.
For the sake of simplicity we will consider the case when the operator M  increases the 

powers by 2 , i.e. 2p  , but the similar reasoning can be applied to bigger values . 
We can write the initial terms in the representation (6) of ( )Ly z  for 2p   as follows:
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20
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                                                                                                                (10)

The infinite system corresponding to the equation (8) then is

                                                                                                                                 (11)

This homogeneous system can be solved considering the equations in pairs. 
Example 1. Construction of an operator L  of the commutant MC  with nonempty spectrum:
Starting with the first two equations of the homogeneous system (11) we can choose 

such values of  , 0,0c , 0,1c , 1,1c , and 1,1c , that the rank of the matrix

                           (12)

to be equal to 1, and then 1det 0   is a quadratic equation for   (it is possible 
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even to choose values for   and then to fix suitable values of 0,0c , 0,1c , 1,1c , and 1,1c ). 
This ensures the existence of a nontrivial solution 0 1( , )a a  of the first pair of equations. 
Now the values of 0a  and 1a  have to be substituted into the next pair of equations for 2a  
and 3a . The matrix of the coefficients is now

     
0

0,0 1,0
1

2
1

0,1 1,1
0

bc c
b

b c c
b
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



 


    
                                                                                                                           (13)

and it has again a zero determinant 2 1det =det 0    and rank 1. Now we have 
the possibility to choose 0,2c , 0,3c , 1,2c , and 1,3c , so that the rank of the extended matrix

        
0

0,0 1,0 0 0,2 1 1,2
1

1
0,1 1,1 0 0,3 1 1,3

0

bc c a c a c
b

b c c a c a c
b
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                                                                                                                           (14)

is again 1 in order the second pair of equations to have a solution for 2 3( , )a a . In the 

same way, we can construct an operator L  such that the equation ( ) ( )Ly z y z  has a 

nontrivial solution 0y  . Thus, we found an operator L  of the commutant MC  with nonempty 

spectrum, containing at least the complex roots   of the quadratic equation 1det ( ) 0  .
Example 2. Construction of an operator L  of the commutant MC  with empty spectrum:
Let again   be a solution of the quadratic equation 1det ( ) 0   ( 1 is defined in 

(12)). As above this ensures that the system of the first two equations in (11) has a nonzero 
solution 0 1( , )a a . But now let us choose 0,2c , 0,3c , 1,2c , and 1,3c  so that the rank of 
the extended matrix (14) to be 2 , i.e. different from the rank of the matrix (13) of the 
coefficients of the unknowns 2a  and 3a . Thus the second pair of equations in the system 
(11) has no solution 2 3( , )a a  and also the whole system (11) has no solution. Therefore 
the spectrum of such an operator is the empty set.

Note: So far only particular cases have been considered, since at the moment we are 
not able to offer a full description of the spectrum of the operators of the commutant MC  
of the operator M in the case 2p  .

Spectrum of the Operators Generated by M  in the Case 0p 
We will use the short representation of the functions in the space S  of the polynomials 

or the functions analytic around the origin, i.e. 
0
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and the definition (3) of the operator M in the case 0p  .
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   where 0kb   - arbitrary, 0,1,2,k   .      (15)

Additionally we suppose that skb b  for k s  , (16)
which is fulfilled in all important particular cases.
Let us consider first the spectrum of the operators generated by M :
Theorem 5. If 0p  , then the pointwise spectrum of the operators generated by M  

consists of at most countably many complex numbers.
Proof: As in Theorem 1 we will work with the equation

1 2
l mLy c M y c M y y   , , 1 2| | | | 0c c  ,          (17)

but in the same way one can work with any operator generated by M . We are looking 
for a nontrivial solution 0y   of (17). Equating the coefficient of the powers of z , the 
following infinite system has to be solved:
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If 
0 0 01 2

l m
k k kc b c b     for some 0k , then 

0k
a  can be chosen different from zero, 

which gives a nontrivial solution. Hence 
0k

  belongs to the spectrum of L . In fact, all 

numbers 1 2
l m

k k kc b c b   , 0,1,2,k   , are in the spectrum. It is obvious that no 

other values of   are in the spectrum and therefore it is an at most countable set.    

Spectrum of the Operators of the Commutant of M  in the Case 0p 
The author gave in Hristova (1991) the following description of the operators of the 

commutant:

Theorem 6. [Hristova (1991)] If 0p   and 
0

( ) k
k

k
y z a z




 , an operator :L S S  

commutes with the operator M  given by (15) and (16) if and only if it has the form

                                          
0

( ) k
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k
Ly z a d z
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
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where kd , 0,1,2,k   , are arbitrary complex numbers, but such that the series in 
(19) is convergent if S  is the space of the analytic functions around the origin.

Now let us describe the spectrum of the operators of the commutant:
Theorem 7. If 0p  , then the pointwise spectrum of the operators :L S S  from 

k s
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the commutant MC  of M  consists of at most countably many complex numbers.
Proof: The equation ( ) ( )Ly z y z  can be written as the following infinite system 

after equating the coefficients of the equal powers of z :
               0 0 0

1 1 1

k k k

a d a
a d a

a d a












 

 

                                                                                                                                                      
                                                                                                                           (20)

Like in the proof of Theorem 5, if 
0 0k kd    for some 0k , then there exists a 

nontrivial solution 0

0
( ) k

ky z d z . Hence 
0k

  belongs to the spectrum of L . This is true 

for all 0,1,2,k   , and the arbitrarily chosen numbers kd  are in the spectrum. Again 

no other values of   are in the spectrum and therefore it is an at most countable set.      
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