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Summary: The main part of the statistical
methods for investigation of factor influences is
based on comparison of conditional distributions.
Common practice is the analyses to be limited only
to measurement and interpretation of differences
between the amounts of the arithmetic mean
and the mean square deviation, due to the
assumption that the distributions are normal.
The arithmetic mean and the standard deviation
are absolutely sufficient for definition of normal
distribution. Very often in practice statistical sets
can be found, whose units do not have normal
distribution. In these cases additional information
about the form of distribution is needed, which
the arithmetic mean and the standard deviation
could not provide.

The article explains the necessity to use moments
of higher rank — third and forth. The cognitive
sense of parameters of the statistical distribution,
constructed on their basis — coefficients of
asymmetry and excess, as well as those which
are based on the positional means is discussed.
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Introduction

ost statistical methods studying factor
M influences are based on the comparison

of conditional distributions.  This
comparison and the assessment of differences
can be achieved in another way — using tests
of correspondence with a given theoretical
distribution, comparing the importance of the
respective differences between distributions,
when data are obtained from representative
samples. The situation is somewhat different
when it is necessary to study the dynamics of a
given phenomenon. In this case, the task consists
in comparing unconditional distributions.

The opportunities offered by dynamic analysis
of values of statistical distribution parameters —
arithmetical mean, mean quadratic deviation,
skewness and kurtosis coefficients — they all
deserve our attention. The meaning of this
approach is also determined by the necessity
of performing such comparisons, when the
methods of the theory of statistical conclusion
and inference are not applicable, i.e. the data
are obtained from exhaustive studies.

It is common practice to limit the analyzes only
to finding and interpreting the arithmetic mean
and the standard deviation, which is due to the
assumption that the distributions are normal.

The arithmetic mean and standard deviation are
indeed sufficient to define the normal distribution.
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However, statistical populations whose units are
not normally distributed are quite frequent in
practice. In such ca ses, additional information is
needed concerning the shape of the distribution,
and it cannot be provided by the arithmetic
mean and standard deviation. Because of the
character of their construction, these parameters
cannot show the direction and strength of those
system and non-system influences, which affect
only some of the units. Indeed, the measures
of variation, standard deviation in particular, are
also influenced by factors affecting part of the
units, but they cannot separate and measure
their effect. This problem is solved by the
skewness coefficient. Usually, this parameter is
described only as a measure of the degree of
deviation of the empirical distribution from the
respective normal one with respect to symmetry
[Venezkii, Venezkaia, 1979; Gatev, 1986, 210].
This explanation can be considered insufficient
in the sense that the question remains open
concerning part of the influences, which the
units have been subject to in the process of their
genesis and formation of their values according
to a certain characteristic. On this issue, it is
important to point out that the following can be
established using the skewness coefficient:

e The presence and strength of influences
affecting only part of the units of the considered
population.

e The cumulative direction of these influences
resulting in left (negative) or right (positive)
skewness.

Kurtosis  coefficient is another important
parameter of the statistical distribution. On this
coefficient as well, the statistical literature usually
only mentions that it measures the deviation of
the empirical distribution from the respective
normal distribution regarding the narrowness of
its peak [Gatev, 1986; Mansfield, 1987]. Indeed,
the different values of this parameter are also an
indicator of the different influences on the units of
a given population, but in another sense [Stefanov,

70

Use and cognition sense of moments of higher rank

Totev, 1960]. If the distribution is symmetric, a
high value of the kurtosis coefficient can mean
a negative correlation between the different
realizations of the individual influencing factors.
In this case, the units are concentrated around
the centre of the distribution to a higher degree
than in the normal distribution, while “the skirts”
of the empirical distribution go beyond the limits
of normal distribution. In case of positive series
correlations, the symmetric kurtosis turns out to
be blunt, negative (other conditions unchanged).
Using the kurtosis coefficient, again thanks to its
construction, the answer is given to the question
whether there is “overconcentration” of the units
in the symmetric distribution, or the opposite
takes place — “overdispersal” under the influence
of certain factors.

The skewness and kurtosis coefficients can
provide valuable information about the influences
affecting statistical population units and assist
decision-making [Kaloyanov, 1998, pp. 59-66].
It is not by coincidence that tens of years ago,
these two coefficients were used for control
of the production process [Borodachev, 1946,
1950]. The skewness coefficient (also known
as a normalized third central moment) is also
applied as one of the methods for comparison
of different families of curves to reveal the
difference between them, being used as a basis
for the empirical analysis [Tsonev, 1971; Cox,
Oakes, 1988]. The two measures are at the basis
of the Jarque-Berra test of the coincidence with
normal distribution.

In the analysis of empirical distributions, it should
be taken into account that the assumption of a
great part of distributions being normal or close
to normal has resulted in the preponderant use
of the arithmetic mean and variance measures
in many studies. This assumption has reflected
upon the development of different statistical
methods for the study of links and relationships.
Higher moments — third and fourth — are not
used by these methods.
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Necessary use and cognitive sense
of higher moments (skewness
and kurtosis coefficients)

inance, and portfolio selection in particular,
Fis one of the fields where statistics and the
assumption of normal distribution are widely
applied. In 1952, two studies were published,
starting a new epoch in modern portfolio analysis.
The first study was by Roy, A. D., "Safety first
and the holding of assets”, and the second —
by Harry M. Markowitz, entitled “Portfolio
Selection”. According to financial specialists,
Markowitz study was a revolution in the field
of modern investment theory and practice. The
essence of the author’s idea consists in taking
into account simultaneously the return and the
variance of the return of the portfolio as a whole
when making investment choices — Figure.

This means to minimize variance at a given return
or to ensure maximum return at a given risk level
(variance). Variance is assumed not constant in
this case; like in a number of statistical methods,
it is taken to be variable and an optimal ratio is
pursued between the values of the mean and
variance. In finance, the return is measured by

mathematical expectation (the arithmetic mean),
and variance by the standard deviation or by
variance. The mathematical expectation (the
expected rate of return) is calculated according
to the formula:

E(r) = ZlPr(s)rS 1)
where:
s=1, 2, .., n are the possible portfolio

outcomes;

r, — the rate of return for scenario s;

Pr(s) — the probability of outcome s taking
place.

The variance measuring the risk is calculated
according to the following formula, where the
symbols are familiar:

0= YPr(s)[r.- EOP @

Financial specialists have accepted to work
with the terms first, second, third, and fourth
moments, which are more convenient for them
because of the more frequent use of probabilities

A
c, P(o,,1,)
N(o,H,)
o, +
M(o,.u,)
o, +
H, , My

Figure 1. Alternative portfolios with different returns and risk levels
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as weights, instead of frequencies. With variance,
regardless of whether the average quadratic
(standard) deviation or variance (dispersion) is
used, they measure the risk of the respective
investment. Variance is calculated as a difference
between the expected and actual return.
Obviously, the smaller is the difference between
the expected and actual return, the lower is the
risk and vice versa.

In reality, the assessment of and comparison
between  different  investment  portfolio
allocations is done on the basis of two
characteristics — expected value and standard
deviation of portfolio returns. The mean value-
standard deviation criterion  (expectation-
dispersion, mean-variance, or M-V) is built on
the basis of these two characteristics. On p. 131,
Bodie, Z, Kane, A, and Marcus, A (2000) define
the criterion in the following way: “A is better
than B, if

E(r,) 2 E(r,) and 6,<o,

and at least one of the equations is strict (i.e.
no equality)”.

The criterion is constructed on the basis of only
two characteristics of probability distribution —
the mathematical expectation and standard
deviation. And if it is assumed that the
mathematical expectation (the arithmetic mean)
is clear enough, then standard deviation has a
rather rich content. In this case, it is accepted as
a measure of risk and, according to the authors
of “Investments”, “the idea is to describe
the likelihood and magnitudes of “surprises”
(deviations from the mean) with as small a set
of statistics as is needed for accuracy. The idea is
to describe the probabilities and magnitudes of
“surprises” (deviations from the mean) using the
minimum set of statistics necessary to achieve
the needed preciseness” [2000; 140]. Bodie, Z,
Kane, A, and Marcus, A emphasize that variance
does not provide a full description of risk.
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The main issue of concern not only for
theoreticians, but also for financial practitioners,
is when and under what conditions the mean-
variance analysis is applicable. As Samuelson
wrote in the very beginning of his article,
“The Fundamental Approximation Theorem of
Portfolio Analysis in Terms of Means, Variances,
and Higher Moments” (1970), “James Tobin
(1958, 1965), Harry Markowitz (1952,1959),
and many other writers have made valuable
contributions to the problem of optimal risk
decisions by emphasizing analyses of means
and variances. These writers have realized that
the results can be only approximate, but have
also realized that approximate and computable
results are better than none... But | think, it
is important to re-emphasize an aspect of the
mean-variance model that seems not to have
received sufficient attention in the recent
controversy, namely the usefulness of mean
and variance in situations involving less and less
risks — what | call “compact” probabilities. The
present paper states and proves two general
theorems involved. In a sense, therefore, it
provides a defense of mean-variance analysis —
in my judgment the most weighty defense yet
given. (In economics, the relevant probability
distributions are not nearly Gaussian, and the
quadratic utility in the large leads to well-known
absurdities). But since | improve on the mean-
variance method and show its exact limitations —
along with those for any -moment model - the
paper can also be regarded as a critique of the
mean-variance approach.”

Samuelson study provides a theoretical basis for
the use of mean-variance analysis.

In their actions, investors suppose that the
conditions of applying mean-variance analysis
are met and overlook higher moments. Like
in many other fields, it is assumed that the
distribution to work with in the case of assets’
returns is a normal one. The convenience
created by this assumption is well-known. But
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at the same time, the problems following from
the acceptance of this assumption, when it is
not true, are known as well. As Zvi Bodie, Alex
Kane, Alan Marcus [2000; 143] note, “There
are theoretical objections to the assumption
that individual security returns are normally
distributed. Since the security prices cannot
be negative, the normal distribution cannot
be truly representative of the behavior of the
return for the holding period as it allows for
any outcome, including for the whole range of
negative prices.”

The main criticism of the mean-variance
method, according to Byrne, P. and Lee, S.
(1997), consist in:

e Utility as a basis of the approach is subject to
serious limitations, resulting in narrow capacity
of describing the actual behavior of large
groups of investors. The use of this approach
for efficient portfolio selection imposes in
almost all cases a quadratic utility function
with the assertion that it approximates well
enough many other functions. But this function
presents significant limitations to the practical
application of the mean-variance approach.

e The assumption of normality of returns is
generally invalid for most securities, including
real estate. When the distribution of returns is
not normal, it is generally impossible to find the
exact optimal solution of distribution problems
(portfolio allocation).

Increasingly, researchers look for ways of
overcoming the limitations imposed by the
assumption of normality of distributions. A
direct consequence of this assumption is also
the use only of the mean and variance, generally
the first and second initial, central, and mixed
moments. Despite the convenience related to
normal distribution, namely that it is defined
unambiguously by two parameters only, it is
useful in the solution just of one part of the
various practical tasks.

One of the possible methods for achieving
more accurate representation of reality and
more precise solutions is the use of higher than
second order moments. Traditionally, these
moments have been applied only in physical
and biological science. According to Donoho
(2000) , by looking at third, fourth and even
higher moments, new philosophical insights
may be gained in a wide variety of disciplines,
from analysis of genes to random motions
of financial data series. Nowadays, including
third and higher order moments becomes a
must”. Harvey and Siddique (2000) arrive to
the conclusion that ,the market takes into
account the presence of skewness in assets
evaluation and investors require compensation
for maintaining assets with negative skewness”.
Ang and Bekaert (2001) arrive to the analogical
conclusion; according to them ,the market
evaluates the degree of asymmetric relationship,
generating an asymmetric portfolio”. Tsaing
(1972) suggests that “the inclusion of a higher
moment is desirable, in this order and that under
identical mean-variance criterion; the degree of
positive skewness should be used to determine
preferences. The use of higher moments enriches
the various utility functions used in portfolio
allocation”.

Among the various studies on this issue,
" Skewness and the Bubble” by Conrad, Dittmar,
and Ghysels (2007) deserves our attention. The
authors explore the possibility of higher moments
in the distribution of returns to be significant
in the explanation of securities returns. On
the basis of data for the period between 1965
and 2005, they evaluate individual variances of
securities, their skewness, and kurtosis. They
find a significant negative relation between
skewness and return — securities with positive
or less negative skewness have lower returns
in the next months. The authors come to the
conclusion of a positive relation between kurtosis
and return. It turns out that the sensitivity
to skewness is different depending on the
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production sector where securities are acquired.
For example, the sensitivity to positive skewness
is higher for the sectors of hardware, software
production, semiconductor industry. There is an
interesting conclusion, supported by practical
results, that variance and skewness decrease
with the increase of kurtosis. According to the
authors, this emphasizes again the necessity for
the evaluation of the link between return and
higher moments to be done simultaneously. The
results also show that shares with high variance
and significant skewness have lower subsequent
return, while higher kurtosis is related to higher
subsequent returns.

The necessity of using higher moments was
realized longtime ago. The reasons were both
theoretical and purely practical. The common
ground between the two types of reasons is the
need to work with distributions different from
normal ones, irrespectively of the influences
having caused the respective distribution.

Karl Pearson (1895) pays attention to gamma
distribution as a model of skewness'. Pareto
(1897) was also interested in asymmetric
distributions, because part of the distributions in
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the economy are asymmetric. As Groeneveld, R. A.
and Meeden, G. (1984; 391) point out, “despite
the many fields where asymmetric distributions
are encountered and work “the concept and
measurement of skewness remains imprecise.”

The main question raised in almost all studies is
what measures with different construction really
determine and how to interpret the obtained
results. It is obvious that there will be differences
between the different measures of skewness,
but what is important in the interpretation of
the obtained results is to take into account the
specific characteristics of those used in each
particular case.

Unlike for the skewness indicator, the
understanding of kurtosis has gone through
serious evolution. The development is in three
main directions. The first is related to the essence
of the measure and its cognitive sense — what
the presence of kurtosis means, what indeed is
measured by the coefficient. The second direction
is related to developing measures of kurtosis
with different characteristics. The third direction
is related to the first two and consists in the
application of kurtosis in theory and practice.

* In case any of my readers may be unfamiliar with the term “kurtosis” we may define meso-
kurtic as “having f, equal to 3,” while platykurtic curves have f, < 3 and leptokurtic > 3. The
important property which follows from this is that is that platykurtic curves have shorter “tails” than the

ARS @

normal curve of error and leptokurtic longer “tails.” I myself bear in mind the meaning of the words
by the above memoria technica, where the first figure represents platypus, and the second kangaroos,
noted for “lepping,” though, perhaps, with equal reason they should be hares!

Figure 2.

1The chronology is from Seier, E. “Celebrating 100 years of Kurtosis 1905-2005".
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During the period between 1906 and 1910,
articles in the journal Biometrika contain
comparisons between frequency distributions
for very large populations in different fields
and for normal distribution, using kurtosis and
skewness.

Student, on p. 160 in his study “Errors of
Routine Analysis” (1927), provides the following
description of kurtosis, as shown on Figure 2.

An assumption is often made that, if for the same
value of the argument x =0, the density function
is higher, then the respective distribution will
have higher kurtosis. The term “density crossing”
is also introduced as a sufficient condition for
a distribution to have higher kurtosis f, than
another distribution [Dyson, 1943, Funican,
1963]. It is presumed that, if two functions
of probability distributions density with equal
variance are crossed twice on each side about
zero (the centre of the distribution), one will
have higher kurtosis than the other.

It is most frequently accepted that kurtosis is a
measure of whether the distribution is peakier
or blunter (flattened) than the respective normal
distribution. The higher kurtosis distribution
reveals a trend of the peak being near the mean,
it decreases fast and has heavy tails. Higher
kurtosis means that a larger part of variance is
due to the rarely met extreme deviations, contrary
to medium deviations with high frequency. The
distribution with a low value of kurtosis shows
a trend of having rather a flat peak close to the
arithmetical mean than a sharp peak.

Another definition of kurtosis is that the latter
represents a degree of peakedness of the
distribution, defined as a shape of the fourth
central moment of the distribution. There are
several methods of its representation. For
example, it is marked as [32 (Abramovitz and
Stegun 1972; 928) or o, (Kenney and Keeping
1951; 27; Kenney and Keeping 1961; 99-102),

where f52: % ,

2

®

and p, indicates the i-th central moment.

The same authors also present the following
version of the formula:

[
=-4-3, 4
which is more frequently used as it measures
the kurtosis with respect to normal distribution.
By subtracting the number 3, the zero value is

obtained for a normal kurtosis distribution.

Van Zwet W.R. (1964) introduced for a class of
symmetric distributions an ordering <. defined
by F < G, if R,(x)=G"(F(x)) is convex for
x>m,, where m_is the symmetry point of F.
It follows from the assumption of symmetry of
distributions that R ;(x) is convex for x>m_,
if it is concave for x<m_. F < G is valid, if
the random variable X with distribution F can
be attributed to the random variable Y with
distribution G through increasing concave-
convex function with respect to the median.
Van Zwet defines kurtosis as an ordering
of symmetric distributions and says that
we should not be representing it by a single
measure. He proposes a method of ordering
of two distributions according to skewness.
The author’s idea found further advance and
Loh, Oja, Lawrence orderings are known in the
literature. The concave-convex functions are
applied in the development of portfolio analysis
methods.

Chissom B. S. (1970), experimenting with
adding and subtracting cases, shows what is,
in his opinion, the correct interpretation of the
kurtosis coefficient (meaning the measure based
on the fourth central moment). He used three
distributions for this purpose — approximately
normal, rectangular, and bimodal.
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In his conclusion, he emphasizes that: "It
is important to remember that kurtosis is
dependent on the distribution peak and tails,
and a major emphasis must be placed on the
tails of the distribution in the determination of
the fourth moment” [1970; 22].

In 1970, a discussion was started on the question
whether the measures of kurtosis reveal the
presence of bimodality. At the basis of this
discussion was the study of Richard Darlington
“Is Kurtosis Really “Peakedness?”, published
in The American Statistician. According to the
author, the term “peakedness” is mistaken
and there is a better term to describe kurtosis:
“bimodality of the distribution” [1970; 19].
To prove this statement, Darlington uses the
deviations z instead of the original values of X.
In this way, the initial formula of the kurtosis
coefficient

N (x-m)*
k= 224 ) (5)
is transformed into
k=N"Y 7" (6)

According to Darlington, this means that k can
be interpreted as “a measure of the degree,
to which the values of z* are grouped around
their mean with value 1; higher grouping
(concentration), means a lower k. As z is equal to
+1 or -1, when z2=1, k can be interpreted as a
measure of the degree, to which the z-values of
the distribution are grouped around +1 and -1.
The best characteristic to describe such grouping
is “bimodality”” [1970; 20]. In his publication,
David K. Hildebrand (1971) also pays attention to
this idea. He presents a family of double gamma
distributions, which are bimodal and have a
kurtosis coefficient between -2 and +3. It turns
out, however, that bimodal distributions can
have high kurtosis, when the modes are not near
the values z = £1. According to J. J. A. Moors,
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this is the reason why the idea of Darlington has
not received the attention it deserves. Moors
(1986; 283) expresses the opinion that “kurtosis
measures the variation around two values p=+ g,
which is a reverse measure of concentration in
these two points. High kurtosis can be present
in two situations: a) concentration of probability
mass near p (corresponding to peaked single-
modal distribution) and b) concentration of
probability mass at the tails of distributions. The
existence of these two possibilities explains the
confusion in the interpretation of kurtosis.”

According to David Rupert [1987; 1] “kurtosis
is often regarded as a measure of the weight
of the distribution tails with respect to normal
distribution. According to other authors, it
measures the narrowness of the peak near
the centre of the distribution”. According to
Rupert, the interpretation of kurtosis is too
short and usually the attempts to make it more
understandable are unsuccessful. On the same
page, he indicates that “The fundamental
problem, as Bickel and Lehmann (1975) noticed,
is that there is no agreement on what kurtosis
measures”. Some authors (e.g. Kendall and
Buckland 1971 and Levin 1984) state that
kurtosis differentiates “the narrowness of
the central peak” from “flatness”. Darlington
emphasizes that the opposite of “peaky” is
bimodal. The flattened distribution is between
these two extremes. But the terms “narrowness
of the central peak”, “flatness”, and "“bimodality”
understate the dependency of kurtosis on the
behavior of tails. Chissom draws attention on the
fact that “a major emphasis must be placed on
the tails of the distribution in the determination
of the fourth moment”.

Johnson and Kotz accept that “Kurtosis is
a measure of the departure from normality
depending on the relative frequency of values
either near the mean or far from it, with respect
to those located at intermediate distance from
the mean” [1985; 22]. Alternative measures of
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kurtosis are proposed, many of them developed
to measure only the narrowness of the central
peak or only the weight of tails, while according
to Rupert, kurtosis characterizes both.

Using Hampel influence function (1968, 1974),
Rupert develops further the discussion by
Darlington. He carries out comparative analysis
between the following three measures of
kurtosis:

e Classical k(F) = p,(F) = iig:i

e Hogg measure (1974), which is supposed to
measure the weight of tails on the basis of “final
values”, using the mean of tails:

Up(F) = ]9 xdF(x) , (7)
q,,(F)

mean measuring the weight of the upper tail

o)

L(F) = | xdF(x) , ®)
mean measuring the weight of the lower tail.

As it is indicated

o)~ 2B -LE

P Uy (F) - L, (F)
is invariant with respect to the location and
scale, and it measures the weight of tails. In
the quoted study, Hogg (1974) uses the second
quantiles of the function F with the condition
that 0 < p < 0.5. This measure is found to be
unstable as the upper means are sensitive to
outliers, although not as much as the classical
measure based on the fourth moment.

9)

e according to Rupert, in order for the measure
of kurtosis to be stable, it must be built on the
basis of the ratio of two stable functions from
the type:

{9, -q,B)}
{9, (F) -q,()}

Hampel influence function provides a quantitative
understanding of kurtosis. A comparative
analysis of the abovementioned three measures
of kurtosis was carried out using this function.
An attempt has been made to establish what is
the relative importance of the weight of tails
and the narrowness of the central peak in each
one of them.

R, (F) for 0<p<n<0.5.(10)

The following conclusions reached by Rupert
by using the influence function, are of special
importance for both theory and practice:

e kurtosis measures both the narrowness of
the central peak and the weight of tails. There
are no pure measures only of the narrowness of
the central peak or only of the weight of tails;

e the location of outliers is as important as
their frequencies;

e disturbances in the centre have much lower
influence than those at the end of tails. The
measure of kurtosis based on the fourth moment
kis mostly a measure of the behavior of tails and
less so of the narrowness of the central peak;

e the three compared measures have common
characteristics.

J. J. A. Moors (1988) proposes a measure
of kurtosis built on the basis of “octiles”, i.e.
quantiles dividing the row in eight equal parts.

The formula of the measure is the following:

[(E,-E)+(E,-E)]
(E,-E)
where E (i=1, 2, 3,5, 6, 7) are, respectively,
first, second, third, fifth, sixth, and seventh

quantiles.

, (11)

Moors indicates the following advantages of this
measure of kurtosis:
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e it can be used even when moments are
nonexistent;

e it is not influenced by (outliers) tails of the
distribution;

e it is easily calculated (can be determined
even graphically).

The mentioned characteristics are a result of
the use of different positional means, which are
known not to be calculated from all values of
the indicator. This is the reason why they are
preferred in case of strongly deviating values.

During the same year, Balanda and MacGillivray
[1988; p. 111] defined kurtosis as “location
and scale-free movement of probability mass
from the shoulders of a distribution into its
centre and tails and we admit that it and can
be formalized in many ways". This definition
is accepted as one of the most successful and
is frequently quoted, as it takes into account
the values and their frequencies not only in the
centre of the distribution, but in its tails and
shoulders. According to Balanda and MacGillivray,
though moments play an important role in
statistical inference they are very poor indicators
of distributional shape. This is the reason why
researchers look for different constructions of
the measure of kurtosis. According to Balanda
and MacGillivray, most studies concentrate on
measuring kurtosis in symmetric distributions and
less attention is paid to asymmetric distributions,
including the connection between skewness and
kurtosis. Obviously, this problem deserves more
attention in the future. The opinion of the authors
is that the formalization of kurtosis should be
pursued in the partial ordering of distributions on
the basis of Van Zwet's concept (1964).

Two years later, in 1990, the same authors
broadened Van Zwet's criterion of asymmetric
distributions. They introduced a coherent
structure of ordering and measures, which do
not require the presence of symmetry. This is
made on the basis of the spread function.
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During the same year, Hosking (1990) defined
L-kurtosis, which is calculated according to the
formula:

t=L/L,, (12)
where L are moments which, according to

Hosking, represent summary statistics for
probability distributions and data samples.

The theory also includes procedures like
order statistics of Gini's mean difference and
provides promising innovations like measures
of skewness and kurtosis, as well as new
evaluation methods of the parameters of
several distributions.

Groeneveld R. A. (1998) checks the degree of
sensitivity of measures proposed by Groeneveld
and Meeden to the shape of the symmetric
distribution (1984). These measures are built
on the basis of quantiles, defined in the
following way [1998; p. 325]:

“For a continuous random variable X with
distribution function F, and continuous density
f, symmetric about zero, we focus on the
distribution of |X|, which has density function
F«(x) = 2F(x) - 1”. The measures are defined
by the expression representing a quantile
measure of skewness:

F.(1-p) +Fi(p) - 2F}(0,5)
Fi(1-p) - Fl(p) -

7,(p, F) =

CFI(1- (p2)) + FI((1 +p)/2) - 2F1(0,75)
B FI(1-(p/2)) - F'((1 +p)/2)

0<p<05.

(13)

Groeneveld R. A. demonstrates that, in essence,
the measure is a ratio of differences between
two positive distances and the sum of those
distances.
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[F1(1-p) - F1(0,5)] - [F1(0,5) - Fl(p)]

V0 B = [ ) 091 5 (105 - Fip)]
) - dp)
~dyp) + dyp) ()

In his study, Groeneveld defines several problems
to be solved

e establishing to what extent y,(p, F) is an
appropriate measure of kurtosis;

e using the influence function to compare how
7,(p, F) and B, reflect the distributional shape;
e finding out to what extent the Shapiro-Wilk
test is appropriate for measuring the difference
from the normal distribution;

The answer to the first problem is that for
appropriate values of p, v,(p, F) is a useful
measure of kurtosis.

The answer to the second problem is that the
measure based upon moments gives higher
influence to the weight of tails and relatively
lower influence to the mass in the centre of the
distribution. “The influence function for B, in the
normal case shows that it is strongly affected by
the small displacements of the mass towards the
tails of the distribution. This effect significantly
decreases with the quantile measure” [1998;
p. 329].

The simulation carried out by the author allowed
him to establish that the Shapiro-Wilk test is a
sensitive measure of deviation from the normal
distribution for small values of p, y,(p, F).

The results are expected and logical, taking into
account the averaging procedure included in the
measure based upon moments. Raising to the
fourth power in the numerator assigns higher
weight to large deviations from the centre of
the distribution and they obviously compensate
the higher frequencies of values in the centre
and close to it.

In 2002, sample g-kurtosis was defined, based on
Geary's test of normality (1936) for symmetric
distributions — 7/6.

g=W=13.29(Iné - In%), (15)

where % = (1/n)Y[x - X| (16)
i=1

Seier and Bonett (2003) define two families
of measures: E(g(z)), where g is a function
of the standardized variable z, and a is a
standardized variable selected in such a way

that the kurtosis for normal distribution
equals 3.

g(z)=ab¥, 2<b<20 17)
and g(z) = a[l-z]’], 0.2<b<1 (18)

It is indicated on these measures that they
attribute higher weight to the central peak
in comparison to the weight of tails, unlike
the measure proposed by Karl Pearson. As a
consequence, the normality tests based on
these measures are more sensitive to the
distribution peak. It is also established that
the two measures satisfy Van Zwet's ordering
and are closely related to L-kurtosis and to
the measure based upon quantiles.

Samuel Kotz and Edith Seier (2007) turn
again to the quantile measure of kurtosis
introduced by Groeneveld. By replacing the
difference between third and first quartile
in the numerator [Q,(p) - Q,(p)] with the
difference between the second and first
quartile [Q, - Q,(p)] and using an influence
function, the authors explore the link
between measures of kurtosis based upon
moments and those based upon quantiles.
The question of the ratio between the
centre and tails of the distribution is again
discussed. Five distributions, characterized
as single mode distributions with heavy tails,
are considered for this purpose.
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Conclusion

uring the last hundred years, there has

been evolution from the more general
definition of Pearson on distributions with
kurtosis as relatively more or less flat-peaked
than the normal curve to the idea of kurtosis as
"location and scale-free movement of probability
mass from the shoulders of a distribution into
its centre and tails”. Between these two ways
of understanding, two other approaches have
found their place. The first one, still frequent
nowadays, including in Bulgarian-language
literature, is that kurtosis represents the
narrowness of the distribution’s central peak.
In this case, the necessary attention is not paid
to the distribution tails. The other extreme
interpretation is related to the exaggerated role
of tails and the bimodality of the distribution.

The main problem that the different authors
dealing with kurtosis are trying to find a decision
to, is which is the most appropriate measure. Part
of the authors accept measures constructed on
the basis of moments (second and fourth central)
as good enough — even if, according to a number
of studies, these measures assign higher weight
to tails, including to outliers, than to values in
the centre or near the centre. For this reason,
there are measures proposed on the basis of
quantiles in many different versions. According
to the author of the present paper, they have
less cognitive value because the positional means
do not account for the values of the variable.
They are only a function of frequencies and use
smaller quantity of information. Undoubtedly,
they are not influenced by outliers, but it is not
always possible and advisable to overlook the
presence of the latter. The measure of kurtosis
is a summarized numerical characteristic of the
narrowness of the distribution peak, which must
account for the values of the variable in the centre
and at the tails of the distribution simultaneously
with frequencies. Such is the measure based on
moments. It is especially important to link the
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measure and its cognitive sense with the behavior
of the units of the respective population and
the causes underlying the specific distribution.
It is obvious that because of the different logic
behind the construction of individual measures,
they would have different values for the same
distribution. But the most important question is
what information is conveyed by each measure,
how it will be interpreted and how it can be
used in analytical activities.

In parallel with theoretical quest for cognitive
sense and the most appropriate measure
of kurtosis, it has been used in practice, in
the solution of problems of different type. A
number of researchers use the presence or
absence of kurtosis together with skewness as
an indicator of deviation or coincidence with
the normal distribution. Other researchers use
kurtosis (usually together with skewness) to
solve problems in the field of medical science,
engineering sciences, finance, etc.

Each statistical characteristic has certain
cognitive sense and its significance should not
be overstated. This is fully valid for skewness
and kurtosis coefficients. They are related to
the shape of the distribution and are meaningful
mainly with one-peak distributions.

In reality, there are cases when distributions
are not only with positive or negative kurtosis,
but are also asymmetric. This issue is almost
not developed in the literature. Each situation
requires special attention to reveal the causes
underlying such distribution.

Researchers pay attention mainly to the
construction of measures of skewness and
kurtosis and their application. There is insufficient
work on the issue of interpretation and cognitive
sense of the respective measures. The most
exhaustive work on these issues is done in the
field of finance, biology, and some technical
sciences, which explains what has been said in a
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part of the previous statement. In economics, as
a rule, higher moments are unduly overlooked.
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Summary: In the last 20 years serious efforts are
made worldwide to clarify the scope, structure,
finances, and activities of the nonprofit sector. A
satellite account on the nonprofit institutions in the
System of National Accounts is developed and tested
in over 30 countries for that purpose. The account
is based on the so called “structural-operational
definition”, which serves as a point of reference when
deciding whether to include or exclude different
types of organizations in the nonprofit sector.

The Bulgarian nonprofit sector was resurrected
quickly in the years of democratization but still is
rather unknown. Its image is built on media cov-
erage (which is frequently more on the negative
side), on fragmentary surveys, and the statistics
does not account for the full size of its role in the
economic and social development. The aim of that
text is to test the applicability of the structural-
operational definition in Bulgaria and to check if
there are the precedent conditions for the coun-
try to join the international efforts to specify the
statistical image of the nonprofit sector.

Key words: structural-operational definition,
Bulgarian  nonprofit  sector,  associations,
foundations, chitalishte (community centers).

JEL: L31.

Introduction

espite the growing global presence of the
D civil society structures and the mounting

interest  from  social researchers,
politicians, and statisticians, the size and
scope of nonprofit activities still remain almost
invisible. Even in countries with long tradition
in the statistical portrayal of the nonprofit
presence and contribution, one rarely can find
comprehensive and internationally comparative
data for that type of organizations.

The object analyzed in that text are Bulgarian
nonprofit organizations and the subject — the
possibility to depict the whole variety they
constitute in a statistically verified methodology.
The aim of the analysis is to check whether is
it possible to include the Bulgarian nonprofit
organizations in the last years’ global efforts
to represent them adequately in the System
of National Accounts by creating a specialized
satellite account. The research has several tasks:
1) to outline the faults in the present nonprofit
contribution reporting by the national statistics;
2) to present in detail the structural-operational
definition; 3) to retrospect historically the
Bulgarian nonprofit sector development; and
4) to analyze the applicability of the structural-
operational definition to the Bulgarian practice.

1 The structural-operational definition is a specific instrument that tests whether any given organization can be accepted as
a part of the nonprofit sector. The definition is developed by a team of the Johns Hopkins University Center for Civil Society

Studies.
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