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Summary: The main part of the sta﬒ s﬒ cal 

methods for inves﬒ ga﬒ on of factor infl uences is 

based on comparison of condi﬒ onal distribu﬒ ons. 

Common prac﬒ ce is the analyses to be limited only 

to measurement and interpreta﬒ on of diff erences 

between the amounts of the arithme﬒ c mean 

and the mean square devia﬒ on, due to the 

assump﬒ on that the distribu﬒ ons are normal. 

The arithme﬒ c mean and the standard devia﬒ on 

are absolutely suffi  cient for defi ni﬒ on of normal 

distribu﬒ on. Very o﬎ en in prac﬒ ce sta﬒ s﬒ cal sets 

can be found, whose units do not have normal 

distribu﬒ on. In these cases addi﬒ onal informa﬒ on 

about the form of distribu﬒ on is needed, which 

the arithme﬒ c mean and the standard devia﬒ on 

could not provide.

The ar﬒ cle explains the necessi﬑  to use moments 

of higher rank – third and forth. The cogni﬒ ve 

sense of parameters of the sta﬒ s﬒ cal distribu﬒ on, 

constructed on their basis – coeffi  cients of 

asymmetry and excess, as well as those which 

are based on the posi﬒ onal means is discussed.

Key words: moments, distribu﬒ ons, asymmetry, 

excess.
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Introduction

M
ost sta﬒ s﬒ cal methods studying factor 

infl uences are based on the comparison 

of condi﬒ onal distribu﬒ ons. This 

comparison and the assessment of diff erences 

can be achieved in another way – using tests 

of correspondence with a given theore﬒ cal 

distribu﬒ on, comparing the importance of the 

respec﬒ ve diff erences between distribu﬒ ons, 

when data are obtained from representa﬒ ve 

samples. The situa﬒ on is somewhat diff erent 

when it is necessary to study the dynamics of a 

given phenomenon. In this case, the task consists 

in comparing uncondi﬒ onal distribu﬒ ons.

The opportuni﬒ es off ered by dynamic analysis 

of values of sta﬒ s﬒ cal distribu﬒ on parameters – 

arithme﬒ cal mean, mean quadra﬒ c devia﬒ on, 

skewness and kurtosis coeffi  cients – they all 

deserve our a﬐ en﬒ on. The meaning of this 

approach is also determined by the necessi﬑  

of performing such comparisons, when the 

methods of the theory of sta﬒ s﬒ cal conclusion 

and inference are not applicable, i.e. the data 

are obtained from exhaus﬒ ve studies.

It is common prac﬒ ce to limit the analyzes only 

to fi nding and interpre﬒ ng the arithme﬒ c mean 

and the standard devia﬒ on, which is due to the 

assump﬒ on that the distribu﬒ ons are normal.

The arithme﬒ c mean and standard devia﬒ on are 

indeed suffi  cient to defi ne the normal distribu﬒ on. 
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However, sta﬒ s﬒ cal popula﬒ ons whose units are 

not normally distributed are quite frequent in 

prac﬒ ce. In such ca ses, addi﬒ onal informa﬒ on is 

needed concerning the shape of the distribu﬒ on, 

and it cannot be provided by the arithme﬒ c 

mean and standard devia﬒ on. Because of the 

character of their construc﬒ on, these parameters 

cannot show the direc﬒ on and strength of those 

system and non-system infl uences, which aff ect 

only some of the units. Indeed, the measures 

of varia﬒ on, standard devia﬒ on in par﬒ cular, are 

also infl uenced by factors aff ec﬒ ng part of the 

units, but they cannot separate and measure 

their eff ect. This problem is solved by the 

skewness coeffi  cient. Usually, this parameter is 

described only as a measure of the degree of 

devia﬒ on of the empirical distribu﬒ on from the 

respec﬒ ve normal one with respect to symmetry 

[Venezkii, Venezkaia, 1979; Gatev, 1986, 210]. 

This explana﬒ on can be considered insuffi  cient 

in the sense that the ques﬒ on remains open 

concerning part of the infl uences, which the 

units have been subject to in the process of their 

genesis and forma﬒ on of their values according 

to a certain characteris﬒ c. On this issue, it is 

important to point out that the following can be 

established using the skewness coeffi  cient:

The presence and strength of infl uences • 

aff ec﬒ ng only part of the units of the considered 

popula﬒ on.

The cumula﬒ ve direc﬒ on of these infl uences • 

resul﬒ ng in le﬎  (nega﬒ ve) or right (posi﬒ ve) 

skewness.

Kurtosis coeffi  cient is another important 

parameter of the sta﬒ s﬒ cal distribu﬒ on. On this 

coeffi  cient as well, the sta﬒ s﬒ cal literature usually 

only men﬒ ons that it measures the devia﬒ on of 

the empirical distribu﬒ on from the respec﬒ ve 

normal distribu﬒ on regarding the narrowness of 

its peak [Gatev, 1986; Mansfi eld, 1987]. Indeed, 

the diff erent values of this parameter are also an 

indicator of the diff erent infl uences on the units of 

a given popula﬒ on, but in another sense [Stefanov, 

Totev, 1960]. If the distribu﬒ on is symmetric, a 

high value of the kurtosis coeffi  cient can mean 

a nega﬒ ve correla﬒ on between the diff erent 

realiza﬒ ons of the individual infl uencing factors. 

In this case, the units are concentrated around 

the centre of the distribu﬒ on to a higher degree 

than in the normal distribu﬒ on, while “the skirts” 

of the empirical distribu﬒ on go beyond the limits 

of normal distribu﬒ on. In case of posi﬒ ve series 

correla﬒ ons, the symmetric kurtosis turns out to 

be blunt, nega﬒ ve (other condi﬒ ons unchanged). 

Using the kurtosis coeffi  cient, again thanks to its 

construc﬒ on, the answer is given to the ques﬒ on 

whether there is “overconcentra﬒ on” of the units 

in the symmetric distribu﬒ on, or the opposite 

takes place – “overdispersal” under the infl uence 

of certain factors.

The skewness and kurtosis coeffi  cients can 

provide valuable informa﬒ on about the infl uences 

aff ec﬒ ng sta﬒ s﬒ cal popula﬒ on units and assist 

decision-making [Kaloyanov, 1998, pp. 59-66]. 

It is not by coincidence that tens of years ago, 

these two coeffi  cients were used for control 

of the produc﬒ on process [Borodachev, 1946, 

1950]. The skewness coeffi  cient (also known 

as a normalized third central moment) is also 

applied as one of the methods for comparison 

of diff erent families of curves to reveal the 

diff erence between them, being used as a basis 

for the empirical analysis [Tsonev, 1971; Cox, 

Oakes, 1988]. The two measures are at the basis 

of the Jarque-Berra test of the coincidence with 

normal distribu﬒ on.

In the analysis of empirical distribu﬒ ons, it should 

be taken into account that the assump﬒ on of a 

great part of distribu﬒ ons being normal or close 

to normal has resulted in the preponderant use 

of the arithme﬒ c mean and variance measures 

in many studies. This assump﬒ on has refl ected 

upon the development of diff erent sta﬒ s﬒ cal 

methods for the study of links and rela﬒ onships. 

Higher moments – third and fourth – are not 

used by these methods.
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Necessary use and cognitive sense 
of higher moments (skewness 
and kurtosis coefficients)

Finance, and portfolio selec﬒ on in par﬒ cular, 

is one of the fi elds where sta﬒ s﬒ cs and the 

assump﬒ on of normal distribu﬒ on are widely 

applied. In 1952, two studies were published, 

star﬒ ng a new epoch in modern portfolio analysis. 

The fi rst study was by Roy, A. D., “Safe﬑  fi rst 

and the holding of assets”, and the second – 

by Harry M. Markowitz, en﬒ tled “Portfolio 

Selec﬒ on”. According to fi nancial specialists, 

Markowitz study was a revolu﬒ on in the fi eld 

of modern investment theory and prac﬒ ce. The 

essence of the author’s idea consists in taking 

into account simultaneously the return and the 

variance of the return of the portfolio as a whole 

when making investment choices – Figure1.

This means to minimize variance at a given return 

or to ensure maximum return at a given risk level 

(variance). Variance is assumed not constant in 

this case; like in a number of sta﬒ s﬒ cal methods, 

it is taken to be variable and an op﬒ mal ra﬒ o is 

pursued between the values of the mean and 

variance. In fi nance, the return is measured by 

mathema﬒ cal expecta﬒ on (the arithme﬒ c mean), 

and variance by the standard devia﬒ on or by 

variance. The mathema﬒ cal expecta﬒ on (the 

expected rate of return) is calculated according 

to the formula:

n

s=1
E(r) = ΣPr(s)rs  

 (1)

where:

s=1, 2, ..., n are the possible portfolio 

outcomes;

rs – the rate of return for scenario s;
Pr(s) – the probabili﬑  of outcome s taking 

place.

The variance measuring the risk is calculated 

according to the following formula, where the 

symbols are familiar:

n

s=1
σ2 =  ΣPr(s)[rs- E(r)]2

 
 (2)

Financial specialists have accepted to work 

with the terms fi rst, second, third, and fourth 

moments, which are more convenient for them 

because of the more frequent use of probabili﬒ es 

Figure 1. Alternative portfolios with different returns and risk levels
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as weights, instead of frequencies. With variance, 

regardless of whether the average quadra﬒ c 

(standard) devia﬒ on or variance (dispersion) is 

used, they measure the risk of the respec﬒ ve 

investment. Variance is calculated as a diff erence 

between the expected and actual return. 

Obviously, the smaller is the diff erence between 

the expected and actual return, the lower is the 

risk and vice versa.

In reali﬑ , the assessment of and comparison 

between diff erent investment portfolio 

alloca﬒ ons is done on the basis of two 

characteris﬒ cs – expected value and standard 

devia﬒ on of portfolio returns. The mean value-

standard devia﬒ on criterion (expecta﬒ on-

dispersion, mean-variance, or M-V) is built on 

the basis of these two characteris﬒ cs. On p. 131, 

Bodie, Z, Kane, A, and Marcus, A (2000) defi ne 

the criterion in the following way: “A is be﬐ er 

than B, if

E(rA) ≥ E(rB)  and  σA ≤ σB

and at least one of the equa﬒ ons is strict (i.e. 

no equali﬑ )”.

The criterion is constructed on the basis of only 

two characteris﬒ cs of probabili﬑  distribu﬒ on – 

the mathema﬒ cal expecta﬒ on and standard 

devia﬒ on. And if it is assumed that the 

mathema﬒ cal expecta﬒ on (the arithme﬒ c mean) 

is clear enough, then standard devia﬒ on has a 

rather rich content. In this case, it is accepted as 

a measure of risk and, according to the authors 

of “Investments”, “the idea is to describe 

the likelihood and magnitudes of “surprises” 

(devia﬒ ons from the mean) with as small a set 

of sta﬒ s﬒ cs as is needed for accuracy. The idea is 

to describe the probabili﬒ es and magnitudes of 

“surprises” (devia﬒ ons from the mean) using the 

minimum set of sta﬒ s﬒ cs necessary to achieve 

the needed preciseness” [2000; 140]. Bodie, Z, 

Kane, A, and Marcus, A emphasize that variance 

does not provide a full descrip﬒ on of risk.

The main issue of concern not only for 

theore﬒ cians, but also for fi nancial prac﬒ ﬒ oners, 

is when and under what condi﬒ ons the mean-

variance analysis is applicable. As Samuelson 

wrote in the very beginning of his ar﬒ cle, 

“The Fundamental Approxima﬒ on Theorem of 

Portfolio Analysis in Terms of Means, Variances, 

and Higher Moments” (1970), “James Tobin 

(1958, 1965), Harry Markowitz (1952,1959), 

and many other writers have made valuable 

contribu﬒ ons to the problem of op﬒ mal risk 

decisions by emphasizing analyses of means 

and variances. These writers have realized that 

the results can be only approximate, but have 

also realized that approximate and computable 

results are be﬐ er than none... But I think, it 

is important to re-emphasize an aspect of the 

mean-variance model that seems not to have 

received suffi  cient a﬐ en﬒ on in the recent 

controversy, namely the usefulness of mean 

and variance in situa﬒ ons involving less and less 

risks – what I call “compact” probabili﬒ es. The 

present paper states and proves two general 

theorems involved. In a sense, therefore, it 

provides a defense of mean-variance analysis – 

in my judgment the most weigh﬑  defense yet 

given. (In economics, the relevant probabili﬑  

distribu﬒ ons are not nearly Gaussian, and the 

quadra﬒ c u﬒ li﬑  in the large leads to well-known 

absurdi﬒ es). But since I improve on the mean-

variance method and show its exact limita﬒ ons – 

along with those for any r-moment model – the 

paper can also be regarded as a cri﬒ que of the 

mean-variance approach.”

Samuelson study provides a theore﬒ cal basis for 

the use of mean-variance analysis.

In their ac﬒ ons, investors suppose that the 

condi﬒ ons of applying mean-variance analysis 

are met and overlook higher moments. Like 

in many other fi elds, it is assumed that the 

distribu﬒ on to work with in the case of assets’ 

returns is a normal one. The convenience 

created by this assump﬒ on is well-known. But 
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at the same ﬒ me, the problems following from 

the acceptance of this assump﬒ on, when it is 

not true, are known as well. As Zvi Bodie, Alex 

Kane, Alan Marcus [2000; 143] note, “There 

are theore﬒ cal objec﬒ ons to the assump﬒ on 

that individual securi﬑  returns are normally 

distributed. Since the securi﬑  prices cannot 

be nega﬒ ve, the normal distribu﬒ on cannot 

be truly representa﬒ ve of the behavior of the 

return for the holding period as it allows for 

any outcome, including for the whole range of 

nega﬒ ve prices.”

The main cri﬒ cism of the mean-variance 

method, according to Byrne, P. and Lee, S. 

(1997), consist in:

U﬒ li﬑  as a basis of the approach is subject to • 

serious limita﬒ ons, resul﬒ ng in narrow capaci﬑  

of describing the actual behavior of large 

groups of investors. The use of this approach 

for effi  cient portfolio selec﬒ on imposes in 

almost all cases a quadra﬒ c u﬒ li﬑  func﬒ on 

with the asser﬒ on that it approximates well 

enough many other func﬒ ons. But this func﬒ on 

presents signifi cant limita﬒ ons to the prac﬒ cal 

applica﬒ on of the mean-variance approach.

The assump﬒ on of normali﬑  of returns is • 

generally invalid for most securi﬒ es, including 

real estate. When the distribu﬒ on of returns is 

not normal, it is generally impossible to fi nd the 

exact op﬒ mal solu﬒ on of distribu﬒ on problems 

(portfolio alloca﬒ on).

Increasingly, researchers look for ways of 

overcoming the limita﬒ ons imposed by the 

assump﬒ on of normali﬑  of distribu﬒ ons. A 

direct consequence of this assump﬒ on is also 

the use only of the mean and variance, generally 

the fi rst and second ini﬒ al, central, and mixed 

moments. Despite the convenience related to 

normal distribu﬒ on, namely that it is defi ned 

unambiguously by two parameters only, it is 

useful in the solu﬒ on just of one part of the 

various prac﬒ cal tasks.

One of the possible methods for achieving 

more accurate representa﬒ on of reali﬑  and 

more precise solu﬒ ons is the use of higher than 

second order moments. Tradi﬒ onally, these 

moments have been applied only in physical 

and biological science. According to Donoho 

(2000) „by looking at third, fourth and even 

higher moments, new philosophical insights 

may be gained in a wide varie﬑  of disciplines, 

from analysis of genes to random mo﬒ ons 

of fi nancial data series. Nowadays, including 

third and higher order moments becomes a 

must”. Harvey and Siddique (2000) arrive to 

the conclusion that „the market takes into 

account the presence of skewness in assets 

evalua﬒ on and investors require compensa﬒ on 

for maintaining assets with nega﬒ ve skewness”. 

Ang and Bekaert (2001) arrive to the analogical 

conclusion; according to them „the market 

evaluates the degree of asymmetric rela﬒ onship, 

genera﬒ ng an asymmetric portfolio”. Tsaing 

(1972) suggests that “the inclusion of a higher 

moment is desirable, in this order and that under 

iden﬒ cal mean-variance criterion; the degree of 

posi﬒ ve skewness should be used to determine 

preferences. The use of higher moments enriches 

the various u﬒ li﬑  func﬒ ons used in portfolio 

alloca﬒ on”.

Among the various studies on this issue, 

“Skewness and the Bubble” by Conrad, Di﬐ mar, 

and Ghysels (2007) deserves our a﬐ en﬒ on. The 

authors explore the possibili﬑  of higher moments 

in the distribu﬒ on of returns to be signifi cant 

in the explana﬒ on of securi﬒ es returns. On 

the basis of data for the period between 1965 

and 2005, they evaluate individual variances of 

securi﬒ es, their skewness, and kurtosis. They 

fi nd a signifi cant nega﬒ ve rela﬒ on between 

skewness and return – securi﬒ es with posi﬒ ve 

or less nega﬒ ve skewness have lower returns 

in the next months. The authors come to the 

conclusion of a posi﬒ ve rela﬒ on between kurtosis 

and return. It turns out that the sensi﬒ vi﬑  

to skewness is diff erent depending on the 
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produc﬒ on sector where securi﬒ es are acquired. 

For example, the sensi﬒ vi﬑  to posi﬒ ve skewness 

is higher for the sectors of hardware, so﬎ ware 

produc﬒ on, semiconductor industry. There is an 

interes﬒ ng conclusion, supported by prac﬒ cal 

results, that variance and skewness decrease 

with the increase of kurtosis. According to the 

authors, this emphasizes again the necessi﬑  for 

the evalua﬒ on of the link between return and 

higher moments to be done simultaneously. The 

results also show that shares with high variance 

and signifi cant skewness have lower subsequent 

return, while higher kurtosis is related to higher 

subsequent returns.

The necessi﬑  of using higher moments was 

realized long﬒ me ago. The reasons were both 

theore﬒ cal and purely prac﬒ cal. The common 

ground between the two ﬑ pes of reasons is the 

need to work with distribu﬒ ons diff erent from 

normal ones, irrespec﬒ vely of the infl uences 

having caused the respec﬒ ve distribu﬒ on.

Karl Pearson (1895) pays a﬐ en﬒ on to gamma 

distribu﬒ on as a model of skewness1. Pareto 

(1897) was also interested in asymmetric 

distribu﬒ ons, because part of the distribu﬒ ons in 

the economy are asymmetric. As Groeneveld, R. A. 

and Meeden, G. (1984; 391) point out, “despite 

the many fi elds where asymmetric distribu﬒ ons 

are encountered and work “the concept and 

measurement of skewness remains imprecise.”

The main ques﬒ on raised in almost all studies is 

what measures with diff erent construc﬒ on really 

determine and how to interpret the obtained 

results. It is obvious that there will be diff erences 

between the diff erent measures of skewness, 

but what is important in the interpreta﬒ on of 

the obtained results is to take into account the 

specifi c characteris﬒ cs of those used in each 

par﬒ cular case.

Unlike for the skewness indicator, the 

understanding of kurtosis has gone through 

serious evolu﬒ on. The development is in three 

main direc﬒ ons. The fi rst is related to the essence 

of the measure and its cogni﬒ ve sense – what 

the presence of kurtosis means, what indeed is 

measured by the coeffi  cient. The second direc﬒ on 

is related to developing measures of kurtosis 

with diff erent characteris﬒ cs. The third direc﬒ on 

is related to the fi rst two and consists in the 

applica﬒ on of kurtosis in theory and prac﬒ ce.

Figure 2.

   * In case any of my readers may be unfamiliar with the term “kurtosis” we may define meso-
kurtic as “having β2 equal to 3,” while platykurtic curves have β2  < 3 and leptokurtic > 3. The
important property which follows from this is that is that platykurtic curves have shorter “tails” than the

normal curve of error and leptokurtic longer “tails.” I myself bear in mind the meaning of the words
by the above memoria technica, where the first figure represents platypus, and the second kangaroos,
noted for “lepping,” though, perhaps, with equal reason they should be hares!

1 The chronology is from Seier, E. “Celebra﬒ ng 100 years of Kurtosis 1905-2005”.
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During the period between 1906 and 1910, 

ar﬒ cles in the journal Biometrika contain 

comparisons between frequency distribu﬒ ons 

for very large popula﬒ ons in diff erent fi elds 

and for normal distribu﬒ on, using kurtosis and 

skewness.

Student, on p. 160 in his study “Errors of 

Rou﬒ ne Analysis” (1927), provides the following 

descrip﬒ on of kurtosis, as shown on Figure 2.

An assump﬒ on is o﬎ en made that, if for the same 

value of the argument x = 0, the densi﬑  func﬒ on 

is higher, then the respec﬒ ve distribu﬒ on will 

have higher kurtosis. The term “densi﬑  crossing” 

is also introduced as a suffi  cient condi﬒ on for 

a distribu﬒ on to have higher kurtosis β2 
than 

another distribu﬒ on [Dyson, 1943, Funican, 

1963]. It is presumed that, if two func﬒ ons 

of probabili﬑  distribu﬒ ons densi﬑  with equal 

variance are crossed twice on each side about 

zero (the centre of the distribu﬒ on), one will 

have higher kurtosis than the other.

It is most frequently accepted that kurtosis is a 

measure of whether the distribu﬒ on is peakier 

or blunter (fl a﬐ ened) than the respec﬒ ve normal 

distribu﬒ on. The higher kurtosis distribu﬒ on 

reveals a trend of the peak being near the mean, 

it decreases fast and has heavy tails. Higher 

kurtosis means that a larger part of variance is 

due to the rarely met extreme devia﬒ ons, contrary 

to medium devia﬒ ons with high frequency. The 

distribu﬒ on with a low value of kurtosis shows 

a trend of having rather a fl at peak close to the 

arithme﬒ cal mean than a sharp peak.

Another defi ni﬒ on of kurtosis is that the la﬐ er 

represents a degree of peakedness of the 

distribu﬒ on, defi ned as a shape of the fourth 

central moment of the distribu﬒ on. There are 

several methods of its representa﬒ on. For 

example, it is marked as β2 (Abramovitz and 

Stegun 1972; 928) or α4 (Kenney and Keeping 

1951; 27; Kenney and Keeping 1961; 99-102),

where β2=
μ4
μ2

2
 , (3)

and μi indicates the i-th central moment.

The same authors also present the following 

version of the formula:

γ2=      - 3
μ4
μ2

2
 , (4)

which is more frequently used as it measures 

the kurtosis with respect to normal distribu﬒ on. 

By subtrac﬒ ng the number 3, the zero value is 

obtained for a normal kurtosis distribu﬒ on.

Van Zwet W.R. (1964) introduced for a class of 

symmetric distribu﬒ ons an ordering ≤S defi ned 

by F ≤S G, if RF,G(x) = G-1(F(x)) is convex for 

x > mF, where mF is the symmetry point of F. 

It follows from the assump﬒ on of symmetry of 

distribu﬒ ons that RF,G(x) is convex for x > mF, 

if it is concave for x < mF. F ≤X G is valid, if 

the random variable Х with distribu﬒ on F can 

be a﬐ ributed to the random variable Y with 

distribu﬒ on G through increasing concave-

convex func﬒ on with respect to the median. 

Van Zwet defi nes kurtosis as an ordering 

of symmetric distribu﬒ ons and says that 

we should not be represen﬒ ng it by a single 

measure. He proposes a method of ordering 

of two distribu﬒ ons according to skewness. 

The author’s idea found further advance and 

Loh, Oja, Lawrence orderings are known in the 

literature. The concave-convex func﬒ ons are 

applied in the development of portfolio analysis 

methods.

Chissom B. S. (1970), experimen﬒ ng with 

adding and subtrac﬒ ng cases, shows what is, 

in his opinion, the correct interpreta﬒ on of the 

kurtosis coeffi  cient (meaning the measure based 

on the fourth central moment). He used three 

distribu﬒ ons for this purpose – approximately 

normal, rectangular, and bimodal.
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In his conclusion, he emphasizes that: “It 

is important to remember that kurtosis is 

dependent on the distribu﬒ on peak and tails, 

and a major emphasis must be placed on the 

tails of the distribu﬒ on in the determina﬒ on of 

the fourth moment” [1970; 22].

In 1970, a discussion was started on the ques﬒ on 

whether the measures of kurtosis reveal the 

presence of bimodali﬑ . At the basis of this 

discussion was the study of Richard Darlington 

“Is Kurtosis Really “Peakedness?”, published 

in The American Sta﬒ s﬒ cian. According to the 

author, the term “peakedness” is mistaken 

and there is a be﬐ er term to describe kurtosis: 

“bimodali﬑  of the distribu﬒ on” [1970; 19]. 

To prove this statement, Darlington uses the 

devia﬒ ons z instead of the original values of Х. 

In this way, the ini﬒ al formula of the kurtosis 

coeffi  cient

k =
N-1Σ(x-m)4

s4  (5)

is transformed into

k = N-1Σ z4. (6)

According to Darlington, this means that k can 

be interpreted as “a measure of the degree, 

to which the values of z2 are grouped around 

their mean with value 1; higher grouping 

(concentra﬒ on), means a lower k. As z is equal to 

+1 or -1, when z2 = 1, k can be interpreted as a 

measure of the degree, to which the z-values of 

the distribu﬒ on are grouped around +1 and -1. 

The best characteris﬒ c to describe such grouping 

is “bimodali﬑ ”” [1970; 20]. In his publica﬒ on, 

David K. Hildebrand (1971) also pays a﬐ en﬒ on to 

this idea. He presents a family of double gamma 

distribu﬒ ons, which are bimodal and have a 

kurtosis coeffi  cient between -2 and +3. It turns 

out, however, that bimodal distribu﬒ ons can 

have high kurtosis, when the modes are not near 

the values z = ±1. According to J. J. A. Moors, 

this is the reason why the idea of Darlington has 

not received the a﬐ en﬒ on it deserves. Moors 

(1986; 283) expresses the opinion that “kurtosis 

measures the varia﬒ on around two values μ ± σ, 

which is a reverse measure of concentra﬒ on in 

these two points. High kurtosis can be present 

in two situa﬒ ons: а) concentra﬒ on of probabili﬑  

mass near μ  (corresponding to peaked single-

modal distribu﬒ on) and b) concentra﬒ on of 

probabili﬑  mass at the tails of distribu﬒ ons. The 

existence of these two possibili﬒ es explains the 

confusion in the interpreta﬒ on of kurtosis.”

According to David Rupert [1987; 1] “kurtosis 

is o﬎ en regarded as a measure of the weight 

of the distribu﬒ on tails with respect to normal 

distribu﬒ on. According to other authors, it 

measures the narrowness of the peak near 

the centre of the distribu﬒ on”. According to 

Rupert, the interpreta﬒ on of kurtosis is too 

short and usually the a﬐ empts to make it more 

understandable are unsuccessful. On the same 

page, he indicates that “The fundamental 

problem, as Bickel and Lehmann (1975) no﬒ ced, 

is that there is no agreement on what kurtosis 

measures”. Some authors (e.g. Kendall and 

Buckland 1971 and Levin 1984) state that 

kurtosis diff eren﬒ ates “the narrowness of 

the central peak” from “fl atness”. Darlington 

emphasizes that the opposite of “peaky” is 

bimodal. The fl a﬐ ened distribu﬒ on is between 

these two extremes. But the terms “narrowness 

of the central peak”, “fl atness”, and “bimodali﬑ ” 

understate the dependency of kurtosis on the 

behavior of tails. Chissom draws a﬐ en﬒ on on the 

fact that “a major emphasis must be placed on 

the tails of the distribu﬒ on in the determina﬒ on 

of the fourth moment”.

Johnson and Kotz accept that “Kurtosis is 

a measure of the departure from normali﬑  

depending on the rela﬒ ve frequency of values 

either near the mean or far from it, with respect 

to those located at intermediate distance from 

the mean” [1985; 22]. Alterna﬒ ve measures of 
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kurtosis are proposed, many of them developed 

to measure only the narrowness of the central 

peak or only the weight of tails, while according 

to Rupert, kurtosis characterizes both.

Using Hampel infl uence func﬒ on (1968, 1974), 

Rupert develops further the discussion by 

Darlington. He carries out compara﬒ ve analysis 

between the following three measures of 

kurtosis:

Classical • k(F)  = μ4(F)  =
μ4(F)
σ4(F) .

Hogg measure (1974), which is supposed to • 

measure the weight of tails on the basis of “fi nal 

values”, using the mean of tails:

Ūp(F)  =  ∫   xdF(x)
∞

q1-p(F)
, (7)

mean measuring the weight of the upper tail

L̄p(F)  =  ∫  xdF(x)
qp(F)

-∞
, (8)

mean measuring the weight of the lower tail.

As it is indicated

Qp(F) =
Ūp(F)  - L̄p(F)
Ū0,5(F)  - L̄0,5(F)  (9)

is invariant with respect to the loca﬒ on and 

scale, and it measures the weight of tails. In 

the quoted study, Hogg (1974) uses the second 

quan﬒ les of the func﬒ on F with the condi﬒ on 

that 0 < p ≤  0.5. This measure is found to be 

unstable as the upper means are sensi﬒ ve to 

outliers, although not as much as the classical 

measure based on the fourth moment.

according to Rupert, in order for the measure • 

of kurtosis to be stable, it must be built on the 

basis of the ra﬒ o of two stable func﬒ ons from 

the ﬑ pe:

Rη.p(F) =
{q1-p(F)  - qp(F)}
{q1-η(F)  - qη(F)} for 0 < p < η < 0.5. (10)

Hampel infl uence func﬒ on provides a quan﬒ ta﬒ ve 

understanding of kurtosis. A compara﬒ ve 

analysis of the abovemen﬒ oned three measures 

of kurtosis was carried out using this func﬒ on. 

An a﬐ empt has been made to establish what is 

the rela﬒ ve importance of the weight of tails 

and the narrowness of the central peak in each 

one of them.

The following conclusions reached by Rupert 

by using the infl uence func﬒ on, are of special 

importance for both theory and prac﬒ ce:

kurtosis measures both the narrowness of • 

the central peak and the weight of tails. There 

are no pure measures only of the narrowness of 

the central peak or only of the weight of tails;

the loca﬒ on of outliers is as important as • 

their frequencies;

disturbances in the centre have much lower • 

infl uence than those at the end of tails. The 

measure of kurtosis based on the fourth moment 

k is mostly a measure of the behavior of tails and 

less so of the narrowness of the central peak;

the three compared measures have common • 

characteris﬒ cs.

J. J. A. Moors (1988) proposes a measure 

of kurtosis built on the basis of “oc﬒ les”, i.e. 

quan﬒ les dividing the row in eight equal parts.

The formula of the measure is the following:

[(E7 - E5) + (E3 - E1)]
(E6 - E2)  

, (11)

where Ei (i = 1, 2, 3, 5, 6, 7) are, respec﬒ vely, 

fi rst, second, third, fi ﬎ h, sixth, and seventh 

quan﬒ les.

Moors indicates the following advantages of this 

measure of kurtosis:
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it can be used even when moments are • 

nonexistent;

it is not infl uenced by (outliers) tails of the • 

distribu﬒ on;

it is easily calculated (can be determined • 

even graphically).

The men﬒ oned characteris﬒ cs are a result of 

the use of diff erent posi﬒ onal means, which are 

known not to be calculated from all values of 

the indicator. This is the reason why they are 

preferred in case of strongly devia﬒ ng values.

During the same year, Balanda and MacGillivray 

[1988; p. 111] defi ned kurtosis as “loca﬒ on 

and scale-free movement of probabili﬑  mass 

from the shoulders of a distribu﬒ on into its 

centre and tails and we admit that it and can 

be formalized in many ways”. This defi ni﬒ on 

is accepted as one of the most successful and 

is frequently quoted, as it takes into account 

the values and their frequencies not only in the 

centre of the distribu﬒ on, but in its tails and 

shoulders. According to Balanda and MacGillivray, 

though moments play an important role in 

sta﬒ s﬒ cal inference they are very poor indicators 

of distribu﬒ onal shape. This is the reason why 

researchers look for diff erent construc﬒ ons of 

the measure of kurtosis. According to Balanda 

and MacGillivray, most studies concentrate on 

measuring kurtosis in symmetric distribu﬒ ons and 

less a﬐ en﬒ on is paid to asymmetric distribu﬒ ons, 

including the connec﬒ on between skewness and 

kurtosis. Obviously, this problem deserves more 

a﬐ en﬒ on in the future. The opinion of the authors 

is that the formaliza﬒ on of kurtosis should be 

pursued in the par﬒ al ordering of distribu﬒ ons on 

the basis of Van Zwet’s concept (1964).

Two years later, in 1990, the same authors 

broadened Van Zwet’s criterion of asymmetric 

distribu﬒ ons. They introduced a coherent 

structure of ordering and measures, which do 

not require the presence of symmetry. This is 

made on the basis of the spread func﬒ on.

During the same year, Hosking (1990) defi ned 

L-kurtosis, which is calculated according to the 

formula:

τ = L4/L2 , (12)

where L are moments which, according to 

Hosking, represent summary sta﬒ s﬒ cs for 

probabili﬑  distribu﬒ ons and data samples.

The theory also includes procedures like 

order sta﬒ s﬒ cs of Gini’s mean diff erence and 

provides promising innova﬒ ons like measures 

of skewness and kurtosis, as well as new 

evalua﬒ on methods of the parameters of 

several distribu﬒ ons.

Groeneveld R. A. (1998) checks the degree of 

sensi﬒ vi﬑  of measures proposed by Groeneveld 

and Meeden to the shape of the symmetric 

distribu﬒ on (1984). These measures are built 

on the basis of quan﬒ les, defi ned in the 

following way [1998; p. 325]:

“For a con﬒ nuous random variable X with 

distribu﬒ on func﬒ on F, and con﬒ nuous densi﬑  

ƒ, symmetric about zero, we focus on the 

distribu﬒ on of |X|, which has densi﬑  func﬒ on 

F*(x) = 2F(x) - 1”. The measures are defi ned 

by the expression represen﬒ ng a quan﬒ le 

measure of skewness:

γ2(p, F) = =
F-1

*(1 - p)  + F-1
*(p)  - 2F-1

*(0,5)
F-1

*(1 - p)  - F-1
*(p)

=
F-1(1 - (p/2))  + F-1((1 + p) /2) - 2F-1(0,75)

F-1(1 - (p/2))  - F-1((1 + p) /2)
 ,

0 < p < 0,5 . (13)

Groeneveld R. A. demonstrates that, in essence, 

the measure is a ra﬒ o of diff erences between 

two posi﬒ ve distances and the sum of those 

distances.
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γ2
(p, F) = =

[F-1
*
(1 - p)  - F-1

*
(0,5)]  -  [F-1

*
(0,5)  - F-1

*
(p)]

[F-1
*
(1 - p)  - F-1

*
(0,5)] + [F-1

*
(0,5)  - F-1

*
(p)]

=
d2(p) -  d1(p)
d2(p) + d1(p) 

(14)

In his study, Groeneveld defi nes several problems 

to be solved

establishing to what extent • γ2(p, F)
 
is an 

appropriate measure of kurtosis;

using the infl uence func﬒ on to compare how • 

γ2(p, F) and β2 refl ect the distribu﬒ onal shape;

fi nding out to what extent the Shapiro-Wilk • 

test is appropriate for measuring the diff erence 

from the normal distribu﬒ on;

The answer to the fi rst problem is that for 

appropriate values of p, γ2(p, F) is a useful 

measure of kurtosis.

The answer to the second problem is that the 

measure based upon moments gives higher 

infl uence to the weight of tails and rela﬒ vely 

lower infl uence to the mass in the centre of the 

distribu﬒ on. “The infl uence func﬒ on for β2 in the 

normal case shows that it is strongly aff ected by 

the small displacements of the mass towards the 

tails of the distribu﬒ on. This eff ect signifi cantly 

decreases with the quan﬒ le measure” [1998; 

p. 329].

The simula﬒ on carried out by the author allowed 

him to establish that the Shapiro-Wilk test is a 

sensi﬒ ve measure of devia﬒ on from the normal 

distribu﬒ on for small values of p, γ2(p, F).

The results are expected and logical, taking into 

account the averaging procedure included in the 

measure based upon moments. Raising to the 

fourth power in the numerator assigns higher 

weight to large devia﬒ ons from the centre of 

the distribu﬒ on and they obviously compensate 

the higher frequencies of values in the centre 

and close to it.

In 2002, sample g-kurtosis was defi ned, based on 

Geary’s test of normali﬑  (1936) for symmetric 

distribu﬒ ons  – τ̂/σ̂.

g = ŵ = 13.29(lnσ̂ - lnτ̂), (15)

where  τ̂ =  (1/n)Σ |xi - x̄ |
i = 1

n
 (16)

Seier and Bone﬐  (2003) defi ne two families 

of measures: E(g(z)), where g is a func﬒ on 

of the standardized variable z, and а is a 

standardized variable selected in such a way 

that the kurtosis for normal distribu﬒ on 

equals 3.

g(z) = ab-|z| ,  2 ≤ b ≤ 20 (17)

and g(z) = a[1-|z|b] ,  0.2 ≤ b ≤ 1 (18)

It is indicated on these measures that they 

a﬐ ribute higher weight to the central peak 

in comparison to the weight of tails, unlike 

the measure proposed by Karl Pearson. As a 

consequence, the normali﬑  tests based on 

these measures are more sensi﬒ ve to the 

distribu﬒ on peak. It is also established that 

the two measures sa﬒ sfy Van Zwet’s ordering 

and are closely related to L-kurtosis and to 

the measure based upon quan﬒ les.

Samuel Kotz and Edith Seier (2007) turn 

again to the quantile measure of kurtosis 

introduced by Groeneveld. By replacing the 

difference between third and first quartile 

in the numerator [Q3(p) - Q1(p)]
 
with the 

difference between the second and first 

quartile [Q2 - Q1(p)] and using an influence 

function, the authors explore the link 

between measures of kurtosis based upon 

moments and those based upon quantiles. 

The question of the ratio between the 

centre and tails of the distribution is again 

discussed. Five distributions, characterized 

as single mode distributions with heavy tails, 

are considered for this purpose.



Use and cogni﬒ on sense of moments of higher rankArticles

80 Economic Alterna﬒ ves, issue 1, 2010

Conclusion

During the last hundred years, there has 

been evolu﬒ on from the more general 

defi ni﬒ on of Pearson on distribu﬒ ons with 

kurtosis as rela﬒ vely more or less fl at-peaked 

than the normal curve to the idea of kurtosis as 

”loca﬒ on and scale-free movement of probabili﬑  

mass from the shoulders of a distribu﬒ on into 

its centre and tails”. Between these two ways 

of understanding, two other approaches have 

found their place. The fi rst one, s﬒ ll frequent 

nowadays, including in Bulgarian-language 

literature, is that kurtosis represents the 

narrowness of the distribu﬒ on’s central peak. 

In this case, the necessary a﬐ en﬒ on is not paid 

to the distribu﬒ on tails. The other extreme 

interpreta﬒ on is related to the exaggerated role 

of tails and the bimodali﬑  of the distribu﬒ on.

The main problem that the diff erent authors 

dealing with kurtosis are trying to fi nd a decision 

to, is which is the most appropriate measure. Part 

of the authors accept measures constructed on 

the basis of moments (second and fourth central) 

as good enough – even if, according to a number 

of studies, these measures assign higher weight 

to tails, including to outliers, than to values in 

the centre or near the centre. For this reason, 

there are measures proposed on the basis of 

quan﬒ les in many diff erent versions. According 

to the author of the present paper, they have 

less cogni﬒ ve value because the posi﬒ onal means 

do not account for the values of the variable. 

They are only a func﬒ on of frequencies and use 

smaller quan﬒ ﬑  of informa﬒ on. Undoubtedly, 

they are not infl uenced by outliers, but it is not 

always possible and advisable to overlook the 

presence of the la﬐ er. The measure of kurtosis 

is a summarized numerical characteris﬒ c of the 

narrowness of the distribu﬒ on peak, which must 

account for the values of the variable in the centre 

and at the tails of the distribu﬒ on simultaneously 

with frequencies. Such is the measure based on 

moments. It is especially important to link the 

measure and its cogni﬒ ve sense with the behavior 

of the units of the respec﬒ ve popula﬒ on and 

the causes underlying the specifi c distribu﬒ on. 

It is obvious that because of the diff erent logic 

behind the construc﬒ on of individual measures, 

they would have diff erent values for the same 

distribu﬒ on. But the most important ques﬒ on is 

what informa﬒ on is conveyed by each measure, 

how it will be interpreted and how it can be 

used in analy﬒ cal ac﬒ vi﬒ es.

In parallel with theore﬒ cal quest for cogni﬒ ve 

sense and the most appropriate measure 

of kurtosis, it has been used in prac﬒ ce, in 

the solu﬒ on of problems of diff erent ﬑ pe. A 

number of researchers use the presence or 

absence of kurtosis together with skewness as 

an indicator of devia﬒ on or coincidence with 

the normal distribu﬒ on. Other researchers use 

kurtosis (usually together with skewness) to 

solve problems in the fi eld of medical science, 

engineering sciences, fi nance, etc.

Each sta﬒ s﬒ cal characteris﬒ c has certain 

cogni﬒ ve sense and its signifi cance should not 

be overstated. This is fully valid for skewness 

and kurtosis coeffi  cients. They are related to 

the shape of the distribu﬒ on and are meaningful 

mainly with one-peak distribu﬒ ons.

In reali﬑ , there are cases when distribu﬒ ons 

are not only with posi﬒ ve or nega﬒ ve kurtosis, 

but are also asymmetric. This issue is almost 

not developed in the literature. Each situa﬒ on 

requires special a﬐ en﬒ on to reveal the causes 

underlying such distribu﬒ on.

Researchers pay a﬐ en﬒ on mainly to the 

construc﬒ on of measures of skewness and 

kurtosis and their applica﬒ on. There is insuffi  cient 

work on the issue of interpreta﬒ on and cogni﬒ ve 

sense of the respec﬒ ve measures. The most 

exhaus﬒ ve work on these issues is done in the 

fi eld of fi nance, biology, and some technical 

sciences, which explains what has been said in a 
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part of the previous statement. In economics, as 

a rule, higher moments are unduly overlooked.
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Summary: In the last 20 years serious eff orts are 

made worldwide to clarify the scope, structure, 

fi nances, and ac﬒ vi﬒ es of the nonprofi t sector. A 

satellite account on the nonprofi t ins﬒ tu﬒ ons in the 

System of Na﬒ onal Accounts is developed and tested 

in over 30 countries for that purpose. The account 

is based on the so called “structural-opera﬒ onal 

defi ni﬒ on”, which serves as a point of reference when 

deciding whether to include or exclude diff erent 

﬑ pes of organiza﬒ ons in the nonprofi t sector.

The Bulgarian nonprofi t sector was resurrected 

quickly in the years of democra﬒ za﬒ on but s﬒ ll is 

rather unknown. Its image is built on media cov-

erage (which is frequently more on the nega﬒ ve 

side), on fragmentary surveys, and the sta﬒ s﬒ cs 

does not account for the full size of its role in the 

economic and social development. The aim of that 

text is to test the applicabili﬑  of the structural-

opera﬒ onal defi ni﬒ on in Bulgaria and to check if 

there are the precedent condi﬒ ons for the coun-

try to join the interna﬒ onal eff orts to specify the 

sta﬒ s﬒ cal image of the nonprofi t sector.

Key words: structural-opera﬒ onal defi ni﬒ on, 

Bulgarian nonprofi t sector, associa﬒ ons, 

founda﬒ ons, chitalishte (communi﬑  centers).

JEL: L31.

Introduction

D
espite the growing global presence of the 

civil socie﬑  structures and the moun﬒ ng 

interest from social researchers, 

poli﬒ cians, and sta﬒ s﬒ cians, the size and 

scope of nonprofi t ac﬒ vi﬒ es s﬒ ll remain almost 

invisible. Even in countries with long tradi﬒ on 

in the sta﬒ s﬒ cal portrayal of the nonprofi t 

presence and contribu﬒ on, one rarely can fi nd 

comprehensive and interna﬒ onally compara﬒ ve 

data for that ﬑ pe of organiza﬒ ons.

The object analyzed in that text are Bulgarian 

nonprofi t organiza﬒ ons and the subject – the 

possibili﬑  to depict the whole varie﬑  they 

cons﬒ tute in a sta﬒ s﬒ cally verifi ed methodology. 

The aim of the analysis is to check whether is 

it possible to include the Bulgarian nonprofi t 

organiza﬒ ons in the last years’ global eff orts 

to represent them adequately in the System 

of Na﬒ onal Accounts by crea﬒ ng a specialized 

satellite account. The research has several tasks: 
1) to outline the faults in the present nonprofi t 

contribu﬒ on repor﬒ ng by the na﬒ onal sta﬒ s﬒ cs; 

2) to present in detail the structural-opera﬒ onal 

defi ni﬒ on; 3) to retrospect historically the 

Bulgarian nonprofi t sector development; and 

4) to analyze the applicabili﬑  of the structural-

opera﬒ onal defi ni﬒ on to the Bulgarian prac﬒ ce.

1 The structural-opera﬒ onal defi ni﬒ on is a specifi c instrument that tests whether any given organiza﬒ on can be accepted as 
a part of the nonprofi t sector. The defi ni﬒ on is developed by a team of the Johns Hopkins Universi﬑  Center for Civil Socie﬑  
Studies.




