
Software Development Methodologies
for Reducing Project Risks

104

Articles

Economic Alternatives, Issue 2, 2014

Veselin Georgiev*

 Kamelia Stefanova**

Summary:
The rapid expansion of information

and communication technologies in all
business and social areas today has
increased the pressure on and the need for
the optimization of software development
process. More than ever, the relation
between quality, cost and time for delivery
become a critical requirement for success.
Developing cost competitive software
products that meet high quality standards
according to the time constrained market
today is becoming a demanding task. Most
of the software development processes
are overburdened with strict and heavy
documentation procedures that require
strong control mechanisms and create
additional sophistication in the software
projects management. New families of
methodologies for software development,
referred to as Agile Processes, are
introduced to meet the challenges of the
future developments in the software industry.
These methodologies focus on the flexibility
and adaptability and are described as agile,
unlike the traditional processes which are
restrictive in the introduction of changes.
The application of these methodologies
and practices answer the need to reduce

Software Development Methodologies
for Reducing Project Risks

* PhD Student, Department Information Technologies and Communications, University of National and World
Economy, email: vgeorgiev@petrovkata.com, twitter: @petrovkata
** Professor, PhD, Department Information Technologies and Communications, University of National and World
Economy

risks and increase quality and usability of
the final software product.

Key words:
Agile Software development, Project

risks, SCRUM, Extreme programming,
Feature Driven Development, Adaptive
Software Development

JEL Classification: C61, C63, C8, D81

Introduction

The vigorous growth of the information
technology in recent years has

created prerequisites for the introduction of
new models in the management of software
projects. A characteristic feature of the
process of software development is that
it is usually dependent on other software
solutions and products in a production plan.
This dependence in an environment of
dynamic development requires continuous
renewal and compliance compared to
other technologies. For large projects it
is even more important. Also distinctive
entrepreneurial culture in this area is gaining
more popularity globally, which is reflected
in the increasing number of companies
providing software solutions. The investment
environment is very dynamic, and the
development of new software solutions is
a target for most investors and investment
funds. This directly affects the possibility of
developing competitive software solutions
and products.

105

Articles

Agile Development Methodologies are
becoming an increasingly popular means
of minimizing the risks associated with
the planning process and development of
software solutions. Their iterative nature of
performance, openness to constant change,
the close cooperation between the customer
and the developers are the key features that
meet the modern business needs.

1. Software development risks

The process of software development
is characterized by specific risks that
accompany various stages of the life cycle.
Depending on the chosen methodology
and workflow of the software development
solution, these risks can have varying rate
of occurrence or have different character.
The term software risk refers to unexpected
events that may cause a negative impact on
the software product, the duration needed
for its development and the resources used.
Risks can be addressed in two main areas:
risks external to the organization over the
occurrence of which cannot be influenced;
internal risks, which are dependent on the
organizational workflows.

 y External Risks - External events are
mainly outside of the project manager
control and, in most cases, the corporation.
Examples include:

 ○ Marketplace developments — rapid
developments can cause an abrupt
change of direction

 ○ Government regulatory changes
 ○ Industry-specific procedures—new

standards, issues
 ○ Mergers/acquisitions
 ○ Legal issues—disputes, lawsuits, and

court orders
 ○ Change-driven factors—new

products, services, changes in market
 ○ Corporate strategy and priority

changes
 ○ Disasters such as fire, flood, earthquake,

or other natural disaster

 ○ Disruptions caused by interference
from external electrical sources

 ○ Loss of power leading to heating or
ventilation malfunctions; air conditioning
failures

 ○ Sabotage, hacking and security
breaches

 ○ Communications systems and
security sensor failures

 ○ Viruses and other malicious attacks
on information systems

 ○ Emergency destruction of
communications

 ○ Platform versions updates during
development cycle

Most of these risks are very difficult to
control at the project manager level but can
be identified and, accordingly managed.
This means that senior management should
be involved in the risk management process
and take considerations.

 y Cost Risks - Most of these types of risks
are directly or indirectly under the project
manager’s control or within the area of
influence. Examples of cost risks include
those arising from:

 ○ Cost overruns by project teams
or subcontractors, vendors, and
consultants

 ○ Scope creep, expansion, and change
that has not been managed

 ○ Poor estimation or errors that result in
unforeseen costs

 ○ Overrun of budget and schedule.
•	 Schedule Risks - Schedule risks

can cause project failure by missing or
delaying a market opportunity for a product
or service. Such risks are caused by:

 ○ Inaccurate estimation, resulting in
errors

 ○ Increased effort to solve technical,
operational, and external problems

 ○ Resource shortfalls, including staffing
delays, insufficient resources, and
unrealistic expectations of assigned
resources

Software Development Methodologies
for Reducing Project Risks

106

Articles

Economic Alternatives, Issue 2, 2014

o Unplanned resource assignment—
loss of staff to other, higher-priority projects.

 y Technology Risks - Technology risks
can result from a wide variety of
circumstances. The result is a failure
to meet systems’ target functionality
or performance expectations. Typical
examples are:

 ○ Problems with immature technology
 ○ Use of the wrong tools
 ○ Software that is untested or fails to

work properly
 ○ Requirement changes with no change

management
 ○ Failure to understand or account for

product complexity
 ○ Integration problems
 ○ Software/hardware performance

issues - poor response times, bugs,
errors.

 y Operational Risks - Operational risks are
characterized by an inability to implement
large-scale change effectively. Such
risks can result in failure to realize the
intended or expected benefits of the
project. Typical causes are:

 ○ Inadequate resolution of priorities or
conflicts

 ○ Failure to designate authority to key
people

 ○ Insufficient communication or lack of
communication plan

 ○ Size of transaction volumes - too
great or too small

 ○ Rollout and implementation risks - too
much, too soon.

One of the key elements in the process
of management of the wide range of risks
and their mitigation is the choice of the
right methodology for managing the entire
software development process. There are
dozens of methodologies that have been
applied to the development of modern
software products in recent years, but the
most productive, suitable and widely used
are the Agile methodologies for software

development. This topic has been already
studied (e.g. John McManus, 2004)

2. Agile Software Development
practices

 The Manifesto for Agile Software
Development, published in 2001 (by Agile
Alliance), defines the agile methodologies
for software development.

Over the next few years, these
methodologies emerge as a natural
reaction to traditional software development
approaches. The reason for this is the
recognized need for an alternative to the
heavy documentation processes. There
are many agile methodologies for software
development. Their common features are
related to the need constantly to adapt
the changing conditions and requirements
that accompany a software project. They
comprise a well-known set of practices,
but combined in such a way so as to bring
the project to a successful completion. Not
all of them cover the entire development
process, some focus only on certain
stages. Rarely is the same methodology
applicable universally in every area in which
we need a software solution. Sometimes
even the same methodology is not suitable
twice consecutively. The successful
implementation of a combination of different
methodologies with their practices would
lead to the successful establishment of its
own process within a software project.

 y Extreme Programming (XP - Fig.
1) develops as a consequence of
the problems that have arisen in the
development cycle of standard models
and processes. Started simply as "an
opportunity to get the job done" practices
that have been proven effective in the
development of software in previous
years. After a series of successful
projects in XP practice is "theorized" in
its essential principles by Kent Beck in
1999. Although individual XP practices

107

Articles

are not new, they are collected and
combined to function together in a new
way, forming a new methodology for
software development. It is a system
of practices that the community of
developers evolutionarily evolved to cope
with problems such as rapid delivery of
quality products, meeting the needs of
business. The term "extreme" comes
from the fact that these conventional
practices are applied to the extreme
level. On Fig. 1 can be seen the main
phases and practices through which an
XP project passes.
Extreme Programming is created for

the use mainly by small, co-located teams
developing software with requirements that
were not clearly defined or are changing.
This methodology emphasizes on the team
work and customer involvement throughout
the software development. Communication
and feedback are focal points in Extreme
Programming. Communication is advocated
not just between the customer and the
analyst, but also between the customer and
the developers, and within the development
team itself. The feedback is achieved

Fig. 1. Methodology process in Extreme Programming

through early and continuous testing.
Proponents of Extreme Programming assert
that its benefits include faster time to market,
higher quality software development, better
customer satisfaction, and highly motivated
working teams.

The basic practices of Extreme
Programming are pair programming, re-
factoring, testing, continuous integration,
and evolutionary design. It should be
noted that there are many other practices
advocated in Extreme Programming and that
the core practices of Extreme Programming
have been named and renamed by many
authors.

 ○ Pair Programming - is the practice
of two programmers/engineers par-
ticipating in the development effort of
one programming unit. Typically, the
pair is divided into one person enter-
ing code or test cases while the other
is reviewing and thinking. The code
resulting from pair programming is
more defect free, does not take sig-
nificantly more time to develop than
if developed by one member, yields
fewer lines of code, and is more sat-

Software Development Methodologies
for Reducing Project Risks

108

Articles

Economic Alternatives, Issue 2, 2014

isfying to programmers. Pair program-
ming encourages the design of the
programming unit to evolve simultane-
ously with the actual programming.

 ○ Refactoring – is an activity of con-
tinuous re-design of a program unit to
take advantage of programming tech-
niques, especially object-oriented de-
sign and design patterns, to make the
programs more reusable, simpler, and
more efficient. Refactoring can occur
at various times throughout the devel-
opment process. A goal of refactoring
is to yield programming units with a
strong internal structure. Additionally,
refactoring allows developers to re-
spond quickly to a change in custom-
er requirements or technology.

 ○ Testing - by Extreme Programming,
includes ideas such as unit testing
by programmers, functional testing by
users, and automated testing to gen-
erate test units that mirror the actual
programming units. These concepts
fully support the testing of program-
ming units to promote a defect free
unit with each unit release. Testing in
Extreme Programming involves two

Product backlog

Sprint planning

Sprint

Daily scrum meeting

Potentially Shippable
Product Increment

Sprint backlog

Next iteration

Backlog items

Fig. 2. Process in software development with Scrum

types of tests. The first type of test-
ing is unit testing which is the testing
of individual programming units such
as a class. Developers write tests for
every class they produce and even
write the tests before writing the code.
When they add functionality to the
original class, they can test the prior
functionality with the developed test-
ing unit and add more tests for the
new functionality. The second type
of testing in Extreme Programming is
functional testing. Functional tests are
scripts developed to test clusters of
classes. Functional testing is typically
use case driven tests. These tests are
responsibility of the users or custom-
ers while the unit tests belong to the
developers.

 ○ Continuous Integration - is a concept
of integrating new code into existing
code and then utilizing the testing
techniques defined by Extreme Pro-
gramming. This practice yields units
of code that are continually tested
during the development.

 ○ Evolutionary Design - involves mak-
ing iterations of a program within

109

Articles

minutes rather than days. The pro-
gramming pair defines each iteration
of the problem and then implements
these iterations. Upon completion, the
problem is expanded to yield another
iteration and then that iteration is im-
plemented.

Extreme programming has been already
studied by Smith and Stoecklin (2001) and
Hneif and Hock Ow (2010)

 y Scrum is another popular agile
methodology, the term comes from the
game of rugby and means clustering of
players around the ball in order to move
it forward. This agile approach (Fig. 2) is
established to manage the process of
software development. It is the "empirical
approach employing concepts of the theory
of control of industrial processes during the
development of the software, as a result
of which exhibit the ideas of flexibility,
adaptability and productivity." The process
enables software companies to realize
their projects quickly and immediately
begin to put into operation. Scrum focuses
on the way the team members work
together to build a flexible system in a
constantly changing environment. Scrum
helps to improve existing practices in the
organization, emphasizing on the frequent
intervention of management to identify
problems and obstacles during the process.
This topic has been already studied (H. J.
Correa, 2008).

 y Feature Driven Development - FDD
is a flexible and adaptive approach to
developing software systems. It does not
cover the entire software process, but
rather focuses on the phases of design and
implementation. FDD combines iterative
method of development best practices
proven to be effective in the industry.
Emphasizes on quality in the process
and often provides the functionality of the
client as well as continuous monitoring of
the progress. The task for each function

is to be described and defined so as to
enable the customer to consider its value
and decide whether or not to include it in
the product.
FDD consists of five sequential processes

and provides methods, techniques and
guidelines required by participants in the
project to build the system. Also, FDD
includes roles, goals and schedules needed
for the project. It is claimed that, unlike
some other methodologies, FDD is suitable
to the development of business critical
systems, considered by Coad (2002) and
Goyal (2007)

 y Adaptive Software Development (ASD)
(Fig. 3) is developed by James A.
Highsmith (2000). ASD focuses primarily
on the development of large and complex
systems. This methodology encourages
the development of the project through
constant development of prototypes.
Overall, ASD is trying to "balance on the
edge of chaos" - its purpose is to set a
framework with sufficient guidance for
the project not to fall into chaos, without
restricting the self-expression and
creativity of the developer.
There are three main components in

Adaptive Software Development:
 ○ The Adaptive Conceptual Model
 ○ The Adaptive Development Model
 ○ The Adaptive Management Model

Without practical techniques, conceptual
ideas remain only as concepts. On the other
hand, techniques without a theoretical base
are reduces to a series of steps executed by
rote. Concepts and practices reinforce each
other as extreme projects do not succumb
to rote practices, they require judgment
based on firm conceptual foundations.

Extreme environments move quickly,
demanding fast learning among project
members and often forcing people to
abandon preconceived assumption. Fast
learning requires iterations – try, review,
repeat. Accelerated schedules demand a

Software Development Methodologies
for Reducing Project Risks

110

Articles

Economic Alternatives, Issue 2, 2014

high degree of concurrency with developers
working on many components at the
same time. Taken together, iteration and
concurrency generate high levels of change,
especially as project size escalates.

The Adaptive Conceptual Model
introduces the new science of complex
adaptive systems as the conceptual
foundation for both development and
management. The Adaptive Development
Model focuses on iterative phases of
development and work-group-level
practices to increase speed and flexibility.
The Adaptive Management Model focuses
on forging adaptive culture and identifying
adaptive practices, particularly those
involving distributed work groups and dealing
with high level of change, collaboration and

management results.
Agile software methodologies has been

studied too by Paetsch, Eberlein, Maurer
(2003), Larman (2004), Todorov (2014).

The Agile practices differ from the

Fig. 3. Adaptive Software Development process [7]

Speculate

Learn

Collaborate

Or can Diverge

Or can Diverge

Or can Diverge

traditional ones mainly in the development
process stages. Authors single out 14
which should be differentiated, and focus
on the management model, communication
patterns approaching final goals:

Agile methodologies characteristics
compared to the traditional approaches

 ○ Development lifecycle – traditional
approach uses linear development
life-cycle model rather than agile
where the process includes iterative
and evolutional delivery model

 ○ Style of development – for traditional
models is typical to be used expectant
type and adaptive approach for agile
practices

 ○ Requirements – traditional models
expect good documented and

knowable development process rather
than agile methods where process
can include rapid or emergent change,
or unknown issues to be discovered
during the project.

111

Articles

 ○ Architecture - Heavyweight architecture
for current and future requirements is
typical for traditional approach, while
agile practices in fact do not need
it, this is known as acronym (YAGNI),
which is typical in agile development
methods where whole process in
documentation or architectural
model is not needed at all.

 ○ Management – the whole process
in traditional models are process-
centric and the process is operated
by command and control. For agile
practices the process is people-
centric operated by leadership and
team collaboration

 ○ Documentation – heavy and detailed
documentation for traditional models,
which gives explicit knowledge. In
agile approach there is typical light
documentation and face-to-face
communication

 ○ Goal – predictability and optimization
for traditional models versus exploration
and adaptation for agile practices

 ○ Change – hard to change process
and project for traditional models and
easy and open for change project and
process for agile models

 ○ Team members - Pre-structured
teams for traditional approach versus
Self-organizing teams in agile models

 ○ Client Involvement – low involvement
of clients in the development process
for traditional models. Client is involved
in the beginning of the project, during
the planning. In agile models client is
involved as part of the team.

 ○ Organization culture – command and
control culture for traditional approach
versus leadership and collaboration
for agile practices

 ○ Software development process
- Universal approach and solution
to provide predictability and high
assurance is typical for traditional
approach. Flexible approach adapted
with collective is typical for agile models.

This topic has been already studied by
Moniruzzaman and Hossain (2013)

Based on the main differences
between traditional and agile practices
some observations about risk changes for
major agile practices can be pointed out.
Depending on the project application of agile
methodologies, the practices may vary as
not always the same practice is applicable
to similar projects, however we can outline
the main advantages of practices in main risk
areas in order to mitigate and manage risk:

Agile process application to main risk
categories

Conclusion

Flexible software methodologies and
practices for software development provide
developers with freedom in the process of
work and interaction with customers and
owners of the products. This approach
contributes to the improvement of the quality
of the final product and minimizes the risks
associated with customer expectations.
Agile methodologies are not best suited for
all projects. When communication between
the developer and the customer is difficult, or
when the development team includes mainly
beginners, agile methodologies will not
yield the best possible results. The process
of continuous planning and incremental
approach is a successful tool to minimize
operating risks and risks associated with
planning, technological risks and those
related to changes in the environment and
the actions of competitors and customers.

Software Development Methodologies
for Reducing Project Risks

112

Articles

Economic Alternatives, Issue 2, 2014

Flexible approaches also allow for regular
team meetings, which is a good tool for
troubleshooting related to teamwork, and
personal and individual problems of each
participant. This type of practice needs to

Risk
Categories

Note
Result in risk

change

External
Risks

Short periods of planning and iterative nature make it possible to
take account of changes in the external environment that will enable
taking the appropriate action and limiting their consequences for
the software product

Risks are
reduced

Cost Risks

The ability to target a small number of elements of the entire
project in every iteration, facilitates the more accurate assessment
of the resources required to build the product. This increases the
cost for stage management and planning of the project, but at a
much lower risk of major discrepancies in the actual and predicted
cost of the project

Risks are
reduced,
Total cost is
increased

Schedule
Risks

Smaller portions planning allow more precise definition of the
terms and tasks to be performed. Larger count of iterations and
the inclusion of the product owner in the discussions can lead to
adding unforeseen additional iterations or design changes, which
increase the time needed for full software development. This in
turn increases the quality of the final product and satisfies the
expectations of product owner.

Schedule risks
are increased

Technology
Risks

Agile methodologies enable developers to explore, experiment
and test different technologies to achieve the highest quality of
software products. This in turn reduces the risk in choosing wrong
technologies. The iterative nature of development and testing
reduces the risk to omit testing any part of the project.

Technology
risks are
reduced

Operational
Risks

Operational risks are typical when developing large applications
or implementing major changes to existing applications, due to
the risk of losing or not well planned part of the project. Typical
for agile methodologies is the slicing of the whole process into
small portions of the development, which provides for the closer
examination of every aspect of the project, and for minimizing the
risk of non-good performance or quality

Operational
risks are
reduced

Table 1. Main Software development risks / Agile development practices application

target a larger budget, due to the longer
period of development. The increased
number of iterations, meetings and additional
planning require more resources planned
for the product’s implementation, though

113

Articles

there is a smaller risk of budget change
compared to the projects implemented
with traditional methodologies. Flexible
practices for development as a whole
can be characterized as a good practice
for managing the dynamics of business
processes, distributed teams changing
business requirements or environment by
enabling the products to meet demands.

References

Agile Alliance, 2009. Manifesto for Agile
Software Development. Available at:
http://www.agilemanifesto.org [Accessed
February, 8th, 2014]

Coad P., Feature-Driven Development.
Available at: http://www.petercoad.
com/ download/bookpdfs/jmcuch06.pdf
[Accessed February, 12th, 2014]

Correa H. J., 2008. Introduction to Scrum

Everette R. Keith, 2002 . Agile Software
Development Processes. A Different
Approach to Software Design

Goyal S., 2007. Feature Driven Development
Agile Techniques for Project Management
and Software Engineering, Technical
University Munich. Available at: http://csis.
pace.edu/~marchese/CS616/Agile/FDD/
fdd.pdf [Accessed March, 5th, 2014]

Highsmith J. A., 2000. Adaptive Software
Development: A Collaborative Approach to
Managing Complex Systems. Available at:
http://books.google.ca/books?id=CVcUAAAA
QBAJ&lpg=PP1&hl=bg&pg=PR15#v=onepage
&q&f=false [Accessed December, 12th, 2013]

Highsmith J. A., 2011. Don’t plan, speculate

Hneif M., Siew Hock Ow, October 2010 ,

Review of agile methodologies in software
development. Available at: http://www.
arpapress.com/Volumes/Vol1/IJRRAS_1_01.
pdf [Accessed March, 9th, 2014].

Larman C., 2004. Agile and Iterative
Development: A Manager‘s Guide. Available
at: http://books.google.bg/books?id=e4Fr
AFn0ytIC&printsec=frontcover&source=g
bs_ge_summary_r&cad=0#v=onepage&q
&f=false [Accessed March, 9th, 2014]

McManus J., 2004. Risk Management in
Software Development Projects. Available
at: http://www.google.bg/books?id=l_VPK9
wUJGIC&printsec=frontcover&hl=bg#v=on
epage&q&f=false [Accessed March, 11th,
2014]

Moniruzzaman A B M, Dr Syed Akhter
Hossain, 2013 . Comparative Study on Agile
software development methodologies

Murch R., 2000. Project Management:
Best Practices for IT Professionals. ISBN-10:
0-13-021914-2

Paetsch F., Eberlein A., Maurer F., 2003.
Requirements engineering and agile software
development, Enabling Technologies:
Infrastructure for Collaborative Enterprises.
WET ICE 2003, ISBN 0-7695-1963-6, 2003,
p. 308-313

Smith S., Sara Stoecklin, 2001. What We
Can Learn From Extreme Programming.
Available at: http://faculty.salisbury.
e d u / ~ x s w a n g / r e s e a r c h / p a p e r s /
serelated/xp/p144-smith.pdf [Accessed
March, 20th, 2014]

Todorov N., 2013. Agile Methodologies
for software development and application
base on standards in quality management.
Bulgarian Academy of Science

