
Analysis and Classification of Business
Software Systems Integration Approaches

77

Articles

Economic Alternatives, Issue 2, 2015

Smilen Kouzmanov*

Summary:
The modern business environment

becomes increasingly globalized and tightly
packed and this exerts pressure on the
organisations to react to events much faster
than before. In such dynamic conditions,
sharing up-to-date information, synchronizing
data and ensuring access to strategic and
decision-supportive knowledge are a top
priority of critical importance. As it is known,
these activities are carried out by the enterprise
application and integration infrastructure, which
is facing a large set of different and serious
issues due to modern organizations’ size and
characteristics. These issues, combined with
the various business context and models,
related to different organizations and economic
sectors led to development of a wide variety
of software integration approaches and
techniques, which applicability depends on
the context of the business case. Knowledge
of different software integration approaches
and their business applicability can reduce
software research, development and
integration costs in large organizations and
can give them access to more up-to-date and
detailed business and market information for
gaining competitive advantage.

Analysis and Classification of Business
Software Systems Integration Approaches

* PhD Student, Department of Information Technologies and Communications, Faculty of Applied Informatics and Statistics,
University of World and National Economy, e-mail: skouzmanov@gmail.com

Key words: Software systems
integration, software integration middleware,
software integration topologies, service-
oriented architectures, enterprise service bus

JEL Classification: C61, C63, O33

1. Introduction

In order to store, access, process and
share up-to-date, valuable and decision-

supportive information about business
context and market, modern organizations
use very large number of software
systems at the same time. The number of
application programs in a large organization
or company can reach hundreds, including
custom, purpose-built software, software
systems from acquired companies, legacy
systems, web-applications and portals
and on-premises deployed instances of
software packages like ERP, CRM, HRP,
BPM, etc. systems. There is a large number
of simultaneously used systems, which
can be based on different implementation
technologies, execution platforms
(operation systems, virtual machines and
application servers), etc. This leads to
a very high level of heterogeneity of the
enterprise information and application
environment, which brings difficulties to

Analysis and Classification of Business
Software Systems Integration Approaches

78

Articles

Economic Alternatives, Issue 2, 2015

the orchestration of multiple systems in
a single business process. This major
problem, which is sooner or later faced by
every large enterprise, undoubtedly makes
software integration and building effective
enterprise integration infrastructure, one of
the key milestones on the road of business
development and success.

2. Problems in the Field of Software
Systems Integration

It is not realistic to admit that the
integration of stand-alone software systems
is a non-trivial, complex task that generally
involves serious challenges which have no
unified solution. Usually in an enterprise
application integration environment a lot of
different systems should be orchestrated
and they usually execute on various
platforms, communicating in a distributed
environment. These factors make the
"easy integration" term quite controversial.
Big independent software vendors offer
integration middleware platforms, which
automate some tasks and make building
of the integration infrastructure easier,
but since real integration challenges are
not only technological, but also have their
architectural, design, business and political
aspects, these software packages cannot
solve all the issues. That is why, when
classifying the integration approaches, we
have to consider a quick overview of main
problem categories in the field of software
integration:

 y Wide variety of systems. In the
process of growth of every business
organization, nodes are added in vertical
and sometimes horizontal direction in
its hierarchy. These new organizational
units are usually functionally divided
from others, have different tasks and

independent business model, which also
leads to different information systems.
Adding new units with their own software
systems usually result in a lot of non-
interconnected systems, which prevents
the information flow in the organization
(Binildas C. A. 2008).

 y Lack of common data format. If different
business units have different information
systems, it is not surprizing that they
will have different data models and data
access approaches as well. These
differences in the data format obviously
prevent data transfer and sharing
between systems and on the other hand
it can lead to data duplication scenarios,
which will provide more than one data
source for the same entity (Binildas C.
A. 2008).

 y Integration and autonomy. If we are
working on software integration, in no
time we will start wondering how long
stand-alone systems will stay divided
and whether they can be united under
centralized control. One aspect of the
problem is that every system will need
data transfer from one or more of the
others systems, but on the other hand
every stand-alone system is responsible
for different line of business so it will
need some autonomy. This leads to the
conclusion that an integrated application
environment consisting of stand-alone
application is a better choice than a
mega system responsible for all.

 y Global scale integration and
transparency. Modern enterprises are
global, they are not based in a single
geographical location or region and
they do not limit their scale – they
have operations around the world, in
different countries, dependent on various

Analysis and Classification of Business
Software Systems Integration Approaches

79

Articles

Economic Alternatives, Issue 2, 2015

administrative and technical factors. This
means that integrated systems will be
deployed in different networks and will
be connected through the cloud, which
can be obstructed by the network route,
firewalls, etc.

 y Partner systems. Enterprises have their
partners as well as their own information
systems. It is obvious that business
operations suggest data transfers
between participants. These systems
cannot be fully integrated because
they are under different organizations
control, but they have to have a certain
level of interoperability. This demands
business information systems to have
communication and B2B integration by
design (Binildas C. A. 2008).

 y Legacy systems. One of the biggest
integration challenges is the limited
control over stand-alone systems.
Many of the systems participating in
the integration scenarios are already
implemented and deployed and cannot
be changed with the only aim to be
included in an integrated environment.
These applications are called with the
term legacy systems, no matter of their
age, and in fact, from this perspective
almost every stand-alone system which is
a subject of integration can be qualified
as a legacy system at some point. In
these cases integration engineers are
forced to overcome these limitations at the
integration middleware level (Laszewski T.
2008) (Chowdhury M. W. 2004) (Saran C.
2004) (Sutor B. 2004).

 y System coupling level. This is another
one of the most discussed challenges in
the field, since every integration solution
is required to keep the coupling level
at the minimum, or in other words the

systems should be loosely coupled. The
main way to achieve a loose coupled
integration is to make minimum level of
assumptions about another system or
software agent. Doing a lot of assumptions
and sharing a lot of knowledge about
systems internal operation can make the
communication more effective but the
solution will be more sensitive to change
(Hohpe G. 2003).

 y Methodological and management
issues. One of the most up-to-date
approaches in integration is related to the
adoption of service-oriented architectures.
These types of software and application
architectures have significant advantages
in software integration, since they use
open standards and technologies, but
despite their wide adoption there is a
lack of common integration approach.
This leads to experimenting with different
service-oriented integration approaches,
which has negative impact on systems
interoperability, project costs, etc.

 y Other issues. Except for the above issues,
there are some additional challenges,
like political and business model change
after implementing an integration
environment, defect management in the
already deployed integration middleware,
different vendors and implementations of
integration technologies, maintainability of
the large scale integration solutions, etc.

3. Research and Classification
of Integration Approaches

After we made an overview of the problems
in the field of software integration, we can
proceed with considering different approaches,
techniques and technologies which are applied
in the area and are used to tackle the main
challenges in practical integration projects.

Analysis and Classification of Business
Software Systems Integration Approaches

80

Articles

Economic Alternatives, Issue 2, 2015

It is obvious that the main aim
of integration solutions is to provide
communication between stand-alone
software systems in an organization. Of
course, different integration solutions use
various communication channels and
endpoint configurations, various data
transfer modes, etc. These characteristics
are logically called integration topology.

On the other hand, because of the
complexity and heterogeneity of modern
application environments, integration
middleware usually provide more advanced
functionality and different level of integration
tasks automation. This is usually related
to adding new layers in the integration
architecture, making it more complex and
can be called a level of abstraction.

4. Software Integration Approaches
from the Perspective
of Middleware Level of Abstraction

As we already mentioned, the level
of abstraction is an integration solution
characteristics, which describes its
architectural complexity, the level of out of
the box functionality provided and the cost
of implementation work.

Basically, it can be said that integration
solutions with lower level of abstraction do
not add, or add less, layers of interaction in
the software architecture, which means they
do not add performance drawback also and
have higher computational performance.
These solutions do not provide a lot of out
of the box functions, which also makes the
implementation more resource-intensive.

On the other hand, integration solutions
with higher levels of abstraction and
automation offer a lot of ready-to-use
functionality and maintenance mechanisms,
which reduce implementation costs and
enhance scalability. The drawback is that

they add new layers of interaction in the
software architecture, which introduces
additional complexity and has negative
impact on performance and leads to
additional compute resources needs.

In order to classify the integration
approaches based on their level of
abstraction we can propose the following
series: file transfer, shared repository,
remote procedure call, message transfer,
and service-oriented integration, sorted in
ascending order of their level of abstraction.

File Transfer. Since a large number of
systems are used in modern organizations,
there are a lot of factors which determine
serious differences between stand-alone
applications. This includes different the age
of the applications, different technologies
and development approaches and even
lack of application programming and
functional integration interfaces. This
raises the need for the integration of almost
incompatible software systems running on
different platforms and based on different
assumptions about the business context.

Integrating such applications can be
a complex task requiring technology
knowledge and business understanding.
However, in some cases the integration
scenario does not require a very high level
of abstraction, automation and out-of-the-
box features. In such cases we need only a
simple, shared and accessible mechanism
for data transfer, which can be used with
different technologies and platforms. Due to
the high heterogeneity of the environment
this approach should have minimal
limitations to the hardware and software.

Files are such mechanism. They
are a universal way for data storage,
which is embedded and can be found in
every operating system used within the

Analysis and Classification of Business
Software Systems Integration Approaches

81

Articles

Economic Alternatives, Issue 2, 2015

organization, so we can say that the simpler
way to integrate applications is the usage
and exchange of files.

Basically, this approach consists of
providing an opportunity for each of the
applications to export files with data which will
be needed by external systems. The export
can be run manually or automatically and
on different time intervals, depending on the
business context and the integration scenario
(Hohpe G. 2003). Since systems are often
deployed on different physical locations and
machines, files should be transferred over
the network, which incorporates network
protocols for file sharing and transfer (like
File Transfer Protocol – FTP and Server
Message Block – SMB). These traditional
approaches can have bad performance
and reliability in a large and complex
application environment, so some authors
propose distributed protocols for parallel file
transfer between applications in large scale
environments (Kolano 2012) (Lin W. C. 2013)
(Anastasiadis S. V. 2009).

One of the main problems in this
approach is how to choose a data and
file format. Usually files exported from
different applications differ in their format,
which requires additional file processing
and conversion. This formed the need
for creating common, wide adopted data
formats for usage in files. Nowadays the
most widely used such format is the so
called eXtensible Markup Language (XML).

Fig. 1. File Transfer Integration

Another issue is the choice of time
interval for the data exports. Since file
export and processing is computational
resources consuming, usually the longest
possible interval which will not leave the
systems too unsynchronized is chosen. The
interval depends on the business context
and can be daily, weekly, monthly and so
on. This makes this technique appropriate
for batch processing, but not for on-line
synchronisation, which on the other hand
is always related with some risk of data
inconsistency between systems.

The greatest advantages of this approach
are the low coupling between systems and
the simplicity of implementation. The systems
are well decoupled since they do not know
any technical details of each other, the only
agreement is about the file format. The other
advantage is that no additional packages are
needed for installation, since the file system
is part of the operating system infrastructure.
The only thing that should be implemented
are modules for file export, if needed.

Shared repository. When using file
transfer to synchronize data, there can be a lot
of drawbacks, like differences in data format,
different entity ownership, different data
representation, semantic dissonance, data
scheme and model differences, data structure
inconsistency and mutual data inconsistency
(Dayal U. 1984) (Batini C. 1986).

The most straightforward solution to such
problems is using a common, centralized

Analysis and Classification of Business
Software Systems Integration Approaches

82

Articles

Economic Alternatives, Issue 2, 2015

database, which is shared between
applications, and every stand-alone system
has the ability to use and update the data
(Hohpe G. 2003). There are also distributed
variations of this approach, which are
based on database replication and/or real-
time synchronization between more than
one repositories which are kept up to date
(Tzaneva M. 2013).

If all the systems in an integration
scenario have access to a shared
database, this fully eliminates the risk of
data inconsistency between applications.
At the same time modern database
management systems have mechanisms
for transactional access, which manages
concurrent operations and lowers the risk
of data errors due to simultaneous updates.

Fig. 1. Shared Data Repository Integration

With modern database management
systems using SQL (Structured Query
Language) Shared databases are
straightforward, easy to implement
approach. Very large portion of nowadays
software uses SQL or SQL based
technologies to communicate with
databases so we do not have to worry
about different communication format

and protocol. Another advantage of
shared databases is that every system
uses similar data representation and
entity schema, which eliminates the risk
of semantic dissonance and the need
for entity aggregation. The engineers
need only a careful design of the data
model and scope in order to cover all
applications needs.

Analysis and Classification of Business
Software Systems Integration Approaches

83

Articles

Economic Alternatives, Issue 2, 2015

The concurrent access can be stated as
a limitation of this approach. When a lot of
applications use a shared database, multiple
access to a single record often occurs.
Every one of the application locks the record
while accessing it and the other cannot use
it until it is unlocked and this strategy can
lead to serious performance drawbacks for
all applications in the scenario.

Remote Procedures Call. Shared
databases and file transfer are data
integration methods, but sometimes this
is not enough, since in some integration
scenarios applications require to call
an operation which is part of another
system functional layer. An example for
such approach is the so called RPC –
Remote Procedure Call, also known as
RPI – Remote Procedure Invocation and
RMI – Remote Method Invocation. Such
integration approaches apply the principle
of data encapsulation. This means that if
an application needs data from another
application, it can send request calling a
relevant function, procedure or method
through an application programming
interface, which is a form of functional
integration interface. Since data can be
passed to the API as parameters, this
mechanism is applicable for both input
and output operations and this guarantees
that every application takes care of its
own data integrity and consistency, without
preventing other systems operations
(Hohpe G. 2003).

Fig. 3. Remote Procedure Call Integration

Since procedure calls are one of the
best known methods for flow control and
data passing in computer programming, the
same concept can be leveraged to a multi-
machine environment if the needed network
infrastructure is supplied. When a remote
procedure is called, the calling system is
blocked and the parameters are passed
over the network to the remote executing
system. After the remote system finishes the
procedure execution, the results are passed
back over the network, and calling system’s
flow continues, like this will be done in a
single-machine call (Birrell A. D. 1984).

An advantage of this approach is that
the functional procedures or methods
which wrap the data and control access
to it can lower the risk of data semantic
issues. Since one system can provide more
than one method for accessing the same
data entity, we can implement a couple of
different representation styles of the same
data, which can provide more than one view
to an entity for different external systems.
Another advantage is that the concept of
procedure and method invocation is well
known for software engineers, which makes
the approach straightforward and easy to
implement.

A disadvantage of this approach is the
high level of coupling between systems,
due to a lot of shared knowledge about
programming interfaces and internal
implementations like functions and
procedures. Another drawback of the

Analysis and Classification of Business
Software Systems Integration Approaches

84

Articles

Economic Alternatives, Issue 2, 2015

approach is the serious difference in
performance between local and remote
procedure calls – remote calls are slower
and this can lead to long blockings in the
calling system flow.

Messaging. One of the main challenges
in the field of integration is providing
system interoperability in a real time data
synchronization fashion and without adding
tight system coupling. An integration
approach which is pretending to address
all these issues is the message passing
or simply messaging. Basically this is a
mechanism for transferring data packets
between systems in a reliable, asynchronous
way with usage of configurable data formats
(Hohpe G. 2003).

Asynchronous messaging is a good
approach for tackling the issues in the
field of distributed systems, because
the process of sending a message itself
does not require both systems to be
in operational state in the same time.
Apart from that asynchronous style
of communication reminds software
engineers that the intersystem data

Fig. 4. Message Passing Integration

transfer is a slow operation and this
stimulates the development loosely
coupled integration solutions.

The message passing environments
usually have a common mechanism for
data transformation. This means that
every system can use its own format for
communication and the message will be
transformed in the appropriate format in
the central mediator, which additionally
loosens the coupling. Since such
functions are held by the central element
of these environments, the presence of
a central mediation element means that
messaging integration solutions should
be designed with care about scalability
(Eugster P.Th. 2003).

Another advantage of the asynchronous
message passing is the lack of blocking
operations and if one of the system needs to
pass a message to another it can just post
it to integration environment and continue
working without waiting for result. After the
message is processed the sender system
will receive a call back from the mediator,
containing the result.

Analysis and Classification of Business
Software Systems Integration Approaches

85

Articles

Economic Alternatives, Issue 2, 2015

A drawback of this approach is that
asynchronous communications are not the
usual way of thinking of software engineers
and this makes the implementation harder,
slower and consuming more resources.
Also asynchronous calls make testing,
troubleshooting and maintenance harder
and time-consuming. Another disadvantage
of this type of integration solutions is that
a way for connecting to the mediator
element is not always provided and in such
cases some integration adapters should be
implemented for the systems which need
them.

Service Oriented Integration. In
a modern enterprise the most current
integration approaches are those which
wrap the stand-alone systems as software
services. Usually information environments
have a large scope and integration and
orchestration of a very large number of
systems is needed. The solution which
solves these issues with the use of software
services are usually called Service Oriented
Architectures (SOA). These solutions
enable different organizational units to build
their own software services that satisfy their

own needs, while at the same time can be
reused by a higher integration layer (Juric
M. B. 2007). Such software services should

Fig. 5. Service Oriented Integration

keep the level of coupling low and enable
interoperability despite the differences in
quality and scope (Menasce D. 2010).

The service itself is a discrete unit
of business logic and functionality,
which is provided to the user through the
service contract. The contract defines
all interactions between the service and
the client, including the service interface,
which is a set of operations and parameters
descriptions, the transferred documents or
business objects and the quality of services.
The business logic and processing are held
by the service implementation. An important
characteristic of the services is their
granularity, which describes the quantity
and scope of business logic and functions
included in a single service. The coarser
granularity means implementing more
functions in one service, which reduces the
business processes complexity and network
latency related with the usage of the
service. On the other hand finer granularity
means implementing fewer functions in one
service, which usually pressupposes better
reuse ability. The reuse of services is one of
the main advantages of this approach.

The integration mechanism in service-
oriented architectures consists of interactions
between three main components: the service

Analysis and Classification of Business
Software Systems Integration Approaches

86

Articles

Economic Alternatives, Issue 2, 2015

provider, the service consumer or client and the service registry. Usually the consumer calls the
registry to find the appropriate service and examine the information about their interface, then

Table 1. Software integration approaches from the perspective of level of abstraction

Approach Advantages Disadvantages Applicability

File Transfer
 y Loose coupling
 y Simplicity; No additional tools

required

 y Transfer of large data
volumes

 y No common data format
 y Concerns about the

time slot of file export
and transfer

 y Systems with no real time
sync needs and higher
tolerance to data delay

 y Systems that rely on
batch jobs for data
transfer

Shared Data
Repository

 y Easy to implement,

straightforward

 y All systems have common

data model, no risk

of semantic dissonance

 y Lower performance
of business critical
applications

 y Higher complexity
in data access
concurrency
management.

 y Systems which need
common data format

 y Systems where
immediate, real time data
synchronization is needed

Remote
Procedure
Call

 y Easy portability

and good code readability

 y Data type checking

and control

 y Escaping semantic

dissonance with different data

views with getter methods.

 y Well known foe engineers,

easy implementation

 y Harder support of
doubled data methods

 y Low performance
of remote calls

 y A lot of knowledge
about the business
layers of system, which
leads to tight coupling

 y Systems where
immediate, real time data
synchronization is needed

 y Systems where
integration engineers
have access to source
code and functional layer.

Messaging

 y Loose coupling due
to a central mediator element

 y Asynchronous calls are
not blocking, so calling
application can continue work

 y Fast transfers and real-time
actual data

 y Harder and complex
 y Management of central

element activities like
addressing, routing, etc.

 y Systems which aim
for loose coupling

 y Fast message passing
and on line transfer.

Software
Service

 y Control over granularity,
business process optimization

 y Loose coupling between
systems

 y Usage of open standards and
wide adopted protocols

 y Service registry and discovery
mechanisms

 y Interface self-definition
 y Wrapping legacy systems

 y Risk of network
or communication
issues

 y Security risks, higher
need of security control

 y Systems which need
loose coupling

 y Systems with real time
data synchronization

 y Environments with high
level of heterogeneity

 y Useful for systems
wrapping and legacy
systems

 y Useful in business
process management
environments

Analysis and Classification of Business
Software Systems Integration Approaches

87

Articles

Economic Alternatives, Issue 2, 2015

calls the service provider with appropriate
request and listens for response.

An important advantage of service-
oriented integration is the usage of modern
web-services. The main advantage of
web-based services is that they usually
communicate with XML and JSON
messages, which are open and widely
used standards that can be parsed by
almost every client. They are also almost
transparent for firewalls. Another advantage
of this approach is the good applicability to
legacy systems, because we can wrap a
legacy system as a service without investing
a lot of time in development. We just have
to implement a service-like adapter which
communicates with the original system over
a known protocol.

As a disadvantage of this approach we
can state the higher security related risk.
When implementing such solutions we
have to be careful about message security,
since while in transmission cross-service
messages can be intercepted, faked,
replaced or intentionally corrupted. This
leads to the need to use secure protocols
like Hypertext Transfer Protocol Secure
(HTTPS).

In the table below we can see a short
summary of the advantages, disadvantages
and application of the integration
approaches by their level of abstraction.

5. Software Integration Approaches
from the Perspective
of the Integration Topology

As we already said, the integration
topology is a logical abstraction which
describes the communication characteristics
and configuration of the integration
environment. In this abstraction we usually
include communication channels types, data
transfer strategies, the usage of mediator

software agents, the type and number of
integration adapters and interfaces and
so on. Usually these components form a
common logical structure, which we can
consider a topology.

Integration topology is an important
characteristic of the integration
environment, since it describes the system
interconnection, which is the most basic
functions of the environment. This makes
the topology coherent with the architecture
characteristics of the environment and gives
us the opportunity to research important
aspects of the integration solution.

In real life projects a lot of topologies are
used, but generally they can be classified
as such which use a mediator software
agent component and such which do not
use one for data transfer. The most common
types we can use to classify the integration
topologies are point-to-point integration,
message broker (hub), message bus and
service bus.

Point-to-Point Integration. A lot of
integration projects start to interconnect two
systems and the easiest way to implement
this is the direct connection between them.
The point-to-point integration approach
considers the systems that need to transfer
data as pairs only and solves every pair
integration problems separately. To make
such communication possible we have to
implement integration adapters on both ends
of the channel in order to transform data in
a proper format. Such integration adapters
are purposely built for every system pair in
a point-to-point integration environment. This
integration approach is considered one of the
earliest and traditional ones, but nowadays it
is not modern enough and cannot address
the issues in large and complex integration
environments (Linssen 2011) (O’Brien 2008).

Analysis and Classification of Business
Software Systems Integration Approaches

88

Articles

Economic Alternatives, Issue 2, 2015

The main advantage of point-to-point
connection is its easy implementation
for environments with a small number of
systems and the straightforward approach.
For interconnecting two systems only the
implementation of the integration adapters
is sufficient and systems application
programming interfaces, remote call
technologies, etc. can be used, which
eliminates the need of installing mediator
elements.

This, on the other hand, is a reason
for one of the main disadvantages of the
approach. Since the integration adapters’
implementation is specific for every systems
pair, this increases the level of shared
knowledge for systems internal operations
and the increased level of cohesion brings
problems to the system’s maintainability and
development and can lead to future system
interconnection issues.

Another drawback of this approach
is the scalability and the management
of the environment when the number of
systems is increasing. Since there is no

Fig. 7. Message Broker Integration

central mediation element, the number of
integration channels and adapter grows
rapidly when new systems are added to the
environment (Schmidt n.d.) (Clifford 2005).
When the number of systems is high, this
makes the topology flawed, hard to manage
and increases the risk of further issues,
since an application or communication
channel outage will be hard to troubleshoot.

Broker. Another interesting type of
topology is the one using a central mediation
element for data transfer between systems
(Goel 2006), which is called a message
broker or hub-and-spoke. This approach is
used in a wide range of different integration
scenarios and such mediators are used
for remote procedure call, message
passing, service based communication, etc.
(Trowbridge D. 2004).

The main aim of this integration topology
is to achieve lower level of coupling
between systems. In such configuration
the broker is the only element which is
achieving direct communication with the
stand-alone systems and it carries all

Analysis and Classification of Business
Software Systems Integration Approaches

89

Articles

Economic Alternatives, Issue 2, 2015

the integration tasks like routing, data
transformation, keeping a register with
system endpoints and so on. This generally
means that the broker is the only element
that has the technical detail for the systems,
like application programming interfaces,
communication channels and protocols and
so on and so the broker can serve as an
isolation level between systems.

Another advantage of this approach
is the lower number of communication
channels and adapters between systems,
which mitigates the complexity of the
environment and makes the maintainability
easier (Johannesson P. 2001). Since the
systems are connected directly only with the
broker, adding a new system means adding
only one new communication channel and
configuring only one adapter. This makes
the environment more scalable and adding
new systems adds less complexity to it.

The main disadvantage of this type of
topology is that the central mediator element
is a single point of failure, and an outage of

Fig. 8. Message Bus Integration

the broker lead to a breakdown in the whole
integration environment. The risk of such
failures can be mitigated with a clustering
solution for the central broker.

Message Bus. The term bus is
adopted from hardware and electrical
engineering, where a common bus is used
for interconnecting a lot of components
and every bus has its own data protocol.
In integration the message bus topologies
are used to additionally lower the coupling
between systems by offering a common
communication mechanism which is not
dependent on systems technical details
and environment heterogeneity (Ott J.
2000). The main characteristics of such
mechanism are a common data format,
a bus control command set and a shared
infrastructure for message passing. A lot
of solutions to integration of intelligent
agents are based on the idea of a
message bus. Such systems are usually
applied in large, geographically distributed
enterprises.

Analysis and Classification of Business
Software Systems Integration Approaches

90

Articles

Economic Alternatives, Issue 2, 2015

Usually large and powerful software
packages which offer a lot of out of the
box functionality are used to implement
message bus solutions. Such product are
IBM WebSphere MQ (WMQ), Microsoft
MQ (MSMQ), etc. These products has the
base functionality of the bus, like primitive
control command, rousting, addressing,
media access, data transformation and
some more advanced features like a lot of
predefined integration adapters. This is one
of the main advantages of such integration
topologies, since the implementation of the
integration is easy and straightforward and
usually it consists only of bus installation
and configuration tasks and integration
scenarios that need specific integration
adapters’ development are relatively rare.

Another advantage of this type of integration
is that messaging products are large software
packages developed and maintained by large
independent software vendors and their user
can rely on high performance and scalability
and enterprise-level support.

Fig. 9. Enterprise Service Bus Integration

Disadvantages of this topology can be
considered almost similar with the broker
based solutions, with the difference that
message buses have more advanced
functionality which can make the installation,
configuration, support and troubleshooting
more resource consuming than in a hub and
spoke solution.

Service Bus. In recent years one of the
most widely used integration approaches
are the so called enterprise service bus.
Usually this concept is considered an
enterprise integration design pattern
or integration topology, which offers a
flexible approach to integration challenges.
The concept of a service bus can be
defined as a new type of architecture
which incorporates a web service based
middleware for message passing, intelligent
routing and transformation (Schulte 2002).
Usually this type of buses are applied in
service-oriented architectures and their
role is to enable the environment for the
needed service level, interoperability and

Analysis and Classification of Business
Software Systems Integration Approaches

91

Articles

Economic Alternatives, Issue 2, 2015

manageability (Keen M. 2004). As other
integration topologies the service bus relies
on a central mediation component, but in
the case of service buses this functionality
can be distributed over different physical

Table 2. Software integration approaches from the perspective of the integration topology.

Approach Advantages Disadvantages Applicability

Point-to-Point
Integration

 y Straightforward approach, easy
to implement for small number
of systems

 y Tight coupling
 y Dependency

of the adapters
on every system

 y Low scalability
 y Hard to manage and

maintain for a larger
number of systems

 y Environments with small
number of systems
with no explicit need
for low cohesion

Broker (Hub-
and-Spokoe)

 y Lower level of cohesion because
of the usage of mediation
component

 y Lower number of communication
channels and adapters

 y Easier to maintain with higher
number of systems

 y Better scalability

 y The central broker
is a single point
of failure

 y Environments which
need a lower level
of cohesion

 y Environment where
a redundant or clustered
broker can be used

Message Bus

 y Lower level of cohesion because
of the usage of mediation
component

 y Lower number of communication
channels and adapters

 y Easier addition of new systems
and better scalability

 y High performance and reliability
 y Wide range of out of the box

features and adapters

 y The bus is a single
point of failure

 y Harder to install and
configure due to the
wide range of out of
the box features

 y Environments which
need a lower level
of cohesion

 y Environments which
need real time data
transfer

Service Bus

 y Lower level of cohesion because
of the usage of mediation
component

 y Lower number of communication
channels and adapters

 y Better scalability
and extensibility, easy addition
of new systems

 y Wide range of out of the box
features and adapters

 y Adoption of open, widely used
standards

 y Better applicability
for heterogeneous environments

 y Better total cost of ownership

 y The bus is a single
point of failure

 y Harder to install and
configure due to the
wide range of out of
the box features

 y Environments which
need a lower level
of cohesion

 y Environments which
need real time data
transfer

 y Heterogeneous
environments which use
wide number of protocols
and technologies

 y Environments which
include legacy systems
which are to be wrapped
as services

locations (Rademakers T. 2009). Another
characteristic of this integration approach
is the usage of open, non-proprietary
standards like XML, JMS, JCA, web
services, etc. (Chappell 2004).

Analysis and Classification of Business
Software Systems Integration Approaches

92

Articles

Economic Alternatives, Issue 2, 2015

As we can see on the figure, one of
the main advantages of this topology is
the high level of scalability, since newly
added systems should be connected only
with the service bus with a proper web-
service based integration adapter and all
other integration tasks like routing, data
transformation and so on can be carried
by the integration middleware.

Another important advantage is the
ability to adopt a service bus in mixed,
heterogenic environments with different
systems running on different platforms
and technologies. Usually, if we need to
build an environment based on a lot of
different protocols like for example JMS,
FTP, HTTP, SOAP, etc. this increases the
complexity of the integration solution,
while enterprise service buses offer a lot
of open standard based adapters which
enables their usage in heterogenic
conditions (Robinson, 2004).

These environments also offer a
better total cost of ownership (TCO),
because of the lower number of adapters
end endpoints. Usually, in mesh or point-
to-point topologies the communication
channels are a lot more than in a
mediated topology which makes the
maintenance more resource consuming,
while a bus environment keeps this
number low and consume less time and
resources for keeping the integration
environment operational. Also, open
standard integration adapters are easy to
troubleshoot in case of communication
issues.

In the table below we can see a short
summary of the advantages, disadvantages
and applications of the integration
approaches by their logical topology.

Conclusion

Integration of software systems is one
of the most complex problems in the scope
of the modern management of company
information infrastructure. Business
organisations nowadays use a very large
number of software systems to support
their business operations and usually these
software applications are used in complex
heterogeneous environments. As a result
a lot of different integration technologies,
approaches and styles have been developed,
and if they are not used appropriately
the integration issues can deepen and
an integration scenario can face tougher
challenges. Hence the need arises to study
and classify the integration approaches and
identify their advantages, disadvantages
and applicability. Such classification can
support business organizations in choosing
an integration approach which suits their
needs and can also be used as a basis on
which a common integration methodology
can be identified.

References

Anastasiadis S. V., Wickremesinghe R.
G., Chase J. S. 2009. Rethinking FTP:
Aggressive block reordering for large file
transfers. (ACM) 4 (4).

Batini C., Lenzerini M., Navathe S. B. 1986.
A Comparative Analysis of Methodologies
for Database Schema Integration. ACM
Computing Surveys (ACM) 18 (4): 323-364.

Binildas C. A. 2008. Service Oriented Java
Business Integration. Packt Publishing.

Birrell A. D., Nelson B. J. 1984. Implementing
Remote Procedure Calls. ACM Transactions
on Computer Systems (ACM) 2 (1): 39-59.

Analysis and Classification of Business
Software Systems Integration Approaches

93

Articles

Economic Alternatives, Issue 2, 2015

Chappell, D. 2004. Enterprise Service Bus.
O’Reilly.

Chowdhury M. W., Iqbal M. Z. 2004.
Integration of Legacy Systems in Software
Architecture. Specification and Verification
of Component-Based Systems, Workshop
at ACM SIGSOFT 2004/FSE-12. Newport
Beach, CA USA.

Clifford, A. 2005. Minimal integration 7: point-
to-point, hub, or bus? Ziff Davis, LLC (Toolbox.
com). http://it.toolbox.com/blogs/minimalit/
minimal-integration-7-pointtopoint-hub-or-
bus-6527. [Accessed December 2014]

Dayal U., Hwang H.Y. 1984. View Definition
and Generalization for Database Integration
in a Multidatabase System. IEEE
Transactions on Software Engineering
(IEEE) 10 (6): 628 - 645 .

Eugster P.Th., Felber P. A., Guerraoui R.,
Kermarrec A.-M. 2003. The Many Faces
of Publish/Subscribe. ACM Computing
Surveys (ACM) 35 (2): 114-131.

Goel, A. 2006. Enterprise Integration EAI
vs. SOA vs. ESB. White Paper. Infosys
Technologies.

Hohpe G., Woolf B. 2003. Enterprise
Integration Patterns - Designing, Building
and Deploying Messaging Solutions.
Addison-Wesley.

Johannesson P., Perjons E. 2001. Design
principles for process modelling in enterprise
application integration. Information Systems
(12th International Conference on Advanced
Systems Engineering) (Elsevier Science
Ltd.) 26 (3): 165–184.

Juric M. B., Loganathan R., Sarang P.,
Jennings F. 2007. SOA Approach to
Integration. Birmingham: Packt Publishing.

Keen M., Acharya A., Bishop S., Hopkins
A., Milinski S., Nott C., Robinson R. 2004.
Patterns: Implementing an SOA using an
Enterprise Service Bus. New York: IBM
Redbooks.

Kolano, P. 2012. High Performance Reliable
File Transfers Using Automatic Many-
to-Many Parallelization. Proceedings of
the 5th Workshop on Resiliency in High
Performance Computing. Rhodes Island.

Laszewski T., Williamson J. 2008. SOA
Integration in the Legacy Environment.
Oracle Technology Network. Oracle
Corporation. October. http://www.oracle.
com/technetwork/art icles/laszewski-
wi ll iamson-soa- legacy-082027.html .
[Accessed December 2014]

Lin W. C., Liaw J. J., We C. T. 2013. The
Modified parallelized file transfer protocol
for multi-users. Proceedings of the
2013 International Joint Conference on
Awareness Science and Technology and
Ubi-Media Computing (iCAST-UMEDIA).
Aizuwakamatsu: IEEE.

Linssen, M. 2011. Perfect Integration 8 -
history of the last decades. http://www.
mart i jnl inssen.com/2011/03/perfect-
integration-8-history-of-last.html. [Accessed
December 2014]

Menasce D., Casalicchio E., Dubey V. 2010.
On optimal service selection in Service
Oriented Architectures. Performance
Evaluation (Elsevier B.V.) (67): 659-675.

O’Brien, R. 2008. Integration Architecture
Explained. Hubpages Inc. http://
ru s se l l o b r i e n . hubpages . com/hub /
Integrat ion-Arch i tec ture-Exp lained.
[Accessed December 2014]

Analysis and Classification of Business
Software Systems Integration Approaches

94

Articles

Economic Alternatives, Issue 2, 2015

Ott J., Kutscher D., Perkins C. 2000. The
Message Bus: A Platform for Component-
based Conferencing Applications.
Proceedings of CBG2000: The CSCW2000
workshop on Component-based Groupware.

Rademakers T., Dirksen J. 2009. Open
Source ESBs in Action. Greenwich, CT:
Manning Publications Co.

Robinson, R. 2004. Understand Enterprise
Service Bus scenarios and solutions in
Service-Oriented Architecture, Part 1. IBM
Developerworks. IBM Corp. June. http://
www.ibm.com/developerworks/. [Accessed
December 2014]

Saran C. 2004. Integration of legacy systems
is vital to effective customer service.
ComputerWeekly.com. TechTarget. May.
http://www.computerweekly.com/feature/
Integration-of-legacy-systems-is-vital-to-
effective-customer-service. [Accessed
December 2014]

Schmidt, J. n.d. Can canonical design
solve your point-to-point integration
complexity? informatica.com. http://
www.informatica.com/us/potential-at-
work/architects/can-canonical-design-

solve-your-po int topo int - integrat ion-
complexi ty.aspx#fbid=hkbz9MgA7t6.
[Accessed December 2014]

Schulte, R. W. 2002. Predicts 2003:
Enterprise Service Buses Emerge. Stamford,
CT: Gartner Inc.

Sutor B. 2004. Something Old, Something
New: Integrating Legacy Systems. eBizQ.
net. TechTarget. October. http://www.
ebizq.net/topics/legacy_integrat ion/
features/5229.html. [Accessed December
2014]

Trowbridge D., Roxburgh U., Hohpe
G., Manolescu D., Nadhan E. G. 2004.
Integration Patterns. Microsoft Developer
Network. Microsoft. June. http://msdn.
microsoft.com/en-us/library/ms978729.
aspx. [Accessed December 2014]

Tzaneva M., Kouzmanov S. 2013. Impact
of Business Problem Characteristics on the
Architecture and Specification of Integration
Framework. Proceedings of the Third
International Conference on Application of
Information and Communication Technology
and Statistics in Economy and Education.
Sofia. 628-635.

