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Abstract 

The fast transition of agricultural systems in response to climate change, market instability, and 

resource depletion has resulted in new paradigms such as Climate-Smart Agriculture (CSA) and the 

more recently mentioned Vulnerably Smart Agriculture (VSA). The idea of "smart agriculture" is 

increasingly used to describe a collection of technologies meant to improve agricultural 

performance, including sensor networks, autonomous machinery, AI-powered decision systems, and 

precise input management. However, smallholders' capacity to embrace such techniques is still 

unknown due to structural constraints such as low capital, low educational levels, a lack of 

infrastructure, and institutional neglect. These barriers are especially significant in areas sensitive to 

weather extremes and characterized with small scale farming, such as Bulgaria's Pazardzhik district, 

where this study was conducted. The publication's aim is to use factor analysis transformed into a 

cluster analysis. The findings are based on empirical data ot the current state of the digitalization 

level of the small farms in the Pazardzhik and the level of transition to smart agriculture. Examintion 

of their ability to adapt Vulnerably Smart Agriculture (VSA) and Climate-Smart Agriculture (CSA) 

are presented. 

This article analyzes the main challenges faced by small farms in their transition to smart agriculture, 

drawing on actual field research done among 30 smallholder farms with an annual production of less 

than €9000. The empirical data shed light on the distinct weaknesses and technological constraints 

of small producers, demonstrating how smart agriculture may help to be tailored – not only 

technologically, but also socially and economically – to their respective environments.The 

incorporation of CSA and VSA into these systems provides a new theoretical and practical paradigm 

for developing resilience at the micro level. This includes not just lowering emissions and improving 

yields, but also promoting livelihood diversification, off-farm revenue creation, and locally specific 

adaption techniques. As global climate threats increase, understanding the circumstances under 

which smallholders might move to more resilient systems becomes crucial to long-term food 

security. This article was financially supported by thе UNWE Research Programme (Research Grant 

No. NID NI-5/2024/А). 
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Introduction of the CSA and VSA 

Agriculture is now seen as part of a broader global picture that includes 

environmental protection, resource-saving technologies, lowering the need for raw 
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materials, economic efficiency, etc., whereas only a few years ago the agricultural 

sector was discussed and studied in terms of specific economic characteristics and 

cultivation technologies (Rose et al., 2021; Doitchinova et al., 2019). This shift reflects 

the increasing alignment of agriculture with the sustainability agenda, especially under 

the pressures of climate change and ecological degradation (FAO, 2013). 

Finally, in the past ten years, the emphasis has switched to new and creative 

approaches, some of which are digital, with the goal of attaining sustainability at 

the territorial level as well as in other areas of sustainability, such as the ecological, 

cultural, social, and economic effects (Klerkx et al., 2019; Eastwood et al., 2017). 

The integration of digital tools in agriculture has enabled more precise and localized 

management practices, further supporting the multidimensional nature of 

sustainability in rural areas (Wolfert et al., 2017; Doitchinova, & Stoyanova, 2024).  

The agriculture sector is frequently criticized for having less advanced technology 

than other economic sectors like industry. For instance, certain businesses and 

processes are already moving toward the 5.0 scale, whereas the agricultural sector 

is mostly at level 2.0 and just a tiny part has reached level 4.0 (Bacco et al., 2019). 

This technological lag is partly due to fragmented land ownership, aging farming 

populations, and limited digital infrastructure in rural areas (Zhang et al., 2021). 

This calls for a new perspective on agriculture because the need to quickly adapt 

agricultural systems to climate change, market volatility, and resource depletion has 

given rise to new paradigms like Climate-Smart Agriculture (CSA). CSA emphasizes 

resilience, productivity, and mitigation of greenhouse gases (Lipper et al., 2014). 

More and more, the term “smart agriculture” is being used to refer to a group of 

technologies designed to enhance agricultural performance, such as sensor 

networks, self-governing equipment, artificial intelligence (AI)-driven decision-

making systems, and accurate input management (Kamilaris et al., 2018; Liakos et 

al., 2018). These technologies enable data-driven farming practices that not only 

increase efficiency but also contribute to environmental goals, including reduced 

emissions and optimized resource use. 

The publication's main goal is to analyze the main challenges that small farms in 

the Pazardzhik region face when transitioning to smart agriculture, including their 

adaptability to the concepts of Climate-Smart Agriculture (CSA) and Vulnerably 

Smart Agriculture (VSA), using empirical data and factor analysis. 

Smart Agriculture is most commonly connected with the usage of the Internet of 

Things (IoT), precision agriculture (PA), artificial intelligence (AI), drones, 

sensors, blockchain, and cloud databases. Researchers in the area underline that this 

will result in optimized resource usage and enhanced tolerance to climate change 

(Wolfert et al. 2017). According to Klerkx et al. (2019), smart agriculture is more 

than simply a technology package; it is also a socio-technical system that includes 

connections between farmers, ICT businesses, service providers, and politicians. 

The primary advantages are focused at lowering resource costs (water and 
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fertilizers), boosting yields, improving decision-making, implementing sustainable 

risk management, and others. In addition to the previously mentioned theory, 

Carolan (2020) argues that digitization in agriculture has two aspects: on the one 

hand, it creates opportunities for sustainable production; on the other hand, by 

expanding its reach geographically, it can exacerbate the digital divide. In rural 

areas with low levels of educational attainment, restricted Internet access, and 

insufficient institutional support, this disparity will be especially noticeable.In 

addition to this idea, the new notion of Vulnerably Smart Agriculture is developed, 

which is based on unrealistic assumptions about digitization. It refers to instances 

in which digital advances fail to address social, institutional, and geographical 

realities, and in certain cases, exacerbate inequality (Santos and Neves, 2022; 

Paycheva, 2022 Harizanova–Metodieva, & Metodiev, 2013). Eastwood et al. 

(2021) and their colleagues identify four major shortcomings that also serve as 

indicators of vulnerability: technological vulnerability, economic vulnerability, 

social vulnerability (digital illiteracy), and ecological vulnerability. According to 

Fraser et al. (2022), in their publication, the implementation of "smart" technologies 

in rural areas is highly unbalanced between farmers with high investment 

opportunities and access to expert support, and small and elderly farmers remain on 

the periphery of the digital transition. This deepens inequality and problems in rural 

areas. In this setting, the Vulnerably Smart Agriculture Index (VSAI) becomes a 

multifaceted, composite diagnostic tool. It seeks to quantify the extent of farm 

integration into smart agricultural systems while paying close attention to structural 

constraints, risk exposure, and gaps in adaptation. Digital divide theory (van Dijk, 

2005), climate-smart agriculture (FAO, 2013), innovation systems theory (Hall et 

al., 2001), and agricultural vulnerability assessment frameworks (Turner et al., 

2003; IPCC, 2014) are some of the theoretical approaches that provide the 

conceptual foundation of the VSAI. 

Main methods and data 

The publication's aim is to use factor analysis transformed into a cluster analysis 

based on empirical data to examine the current state of the digitalization level of the 

small farms. The goal is to track the degree of smart agriculture adoption, including 

their capacity to adopt the concepts of Climate-Smart Agriculture (CSA) and 

Vulnerably Smart Agriculture (VSA).The research was conducted in December 

2024 among small farms in the Pazardzhik municipality with the aim of assessing 

the digital vulnerability of farms with different levels of digitalization. With an 

emphasis on smallholder farms with an annual production value of less than €9000, 

which is the legal definition of small farms in Bulgaria, the sample of 30 farms was 

selected at random from the Pazardzhik municipality.The region's present 

agricultural structure, where most farms are fragmented, family-owned, and have 
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low levels of capitalization, is reflected in the tiny sample size.The statistics are 

based on an assessment of Likert-based criteria on the main elements of vulnerable 

agriculture, which include production efficiency, market connection, technical 

equipment, and environmental monitoring, in accordance with the theoretical 

framework. This study employed the Principal Component Analysis (PCA) method, 

which transforms the original variables into new, uncorrelated linear combinations 

(components) that explain the greatest amount of variance. The number of factors 

was determined using Kaiser's criteria, which stipulate that only factors with 

eigenvalues greater than one are retained (Kaiser, 1960). When the chosen 

components account for more than 40–50% of the total variation, the model is 

considered reasonable. According to the data, the follow assumption after 

proceeding factor analysis is made in table 1. 

Table 1. Loadings of factors 

Factor Еxplanations Loadings 

PC1 General digital activity – efficiency, automation, market  33.5% 

PC2 Puts ecology against market Puts automation against ecology  27.0% 

PC3 Puts automation against ecology Remaining specific information 25.1% 

PC4 Remaining specific information 14.3% 

Source: own calculations 

 

Together, the first two variables (PC1 and PC2) account for 60.5% of the total 

appearance. Thus, more than half of the variations across farms may be explained by 

two primary axes of difference (such as “digital progress” and “ecology vs. market”). 

Factors loadings are summarized in the following table 2. 

Table 2. Cross measurement of factors 

Cross meassurеments PC1 PC2 PC3 PC4 

Digital Productivity & Resource Optimization 0.572 –0.231 –0.730 –0.302 

Technological Enablement for Automation 0.556 –0.341 0.634 –0.415 

Market Access & Value Chain Enhancement 0.377 0.897 0.068 0.221 

Sustainability & Environmental Monitoring 0.481 –0.124 –0.234 0.829 

Source: own calculations 

 

Based on the factor analysis, four main dimensions were identified that describe the 

differences between the surveyed farms in terms of digitalization. The first 

dimension covers efficiency and resource optimization, the second dimension is 



95 

based on automation and technological equipment, the third dimension describes 

access to markets and digital trade, including online platforms and logistics. The 

last dimension focuses on sustainability and environmental monitoring, through 

resource-saving and environmental protection practices. Each of these factors is the 

result of grouping similar survey questions and explains a different aspect of the 

digital vulnerability of farms. Once the factor analysis has been conducted, we will 

use the data from it for the 4 factors to calculate the respondent's responsiveness 

index using the following formula: 

𝑉𝑆𝐴𝐼𝑖 =
1

4
(𝐹𝑎𝑐𝑡𝑜𝑟1 + 𝐹𝑎𝑐𝑡𝑜𝑟2 + 𝐹𝑎𝑐𝑡𝑜𝑟3 + 𝐹𝑎𝑐𝑡𝑜𝑟4 ) 

This index shows (table 3) the level of digitalization and the higher the number, the 

more digitalized the farm is. It is understood, it is clarified that the data is based on 

the responses of 30 managers of small farms, randomly selected by random 

sampling.  

Table 3. VASI 

Farms 1–10 Farms 11–20 Farms 21–30 

–1.068 –0.316 0.489 

–0.715 –0.499 0.622 

–0.662 –0.431 0.722 

–0.723 –0.387 0.775 

–0.736 –0.710 0.713 

–0.809 –0.403 1.053 

–0.582 –0.873 1.899 

–0.709 –0.509 1.821 

–0.548 –0.194 1.760 

–0.412 –0.445 1.926 

Source: own calculations 

According to the data of the VASI index of each farm was conducted cluster 

analysis (K-means method), which will devide the respondents into 3 groups- low 

digitalization, medium and high. Each VASI result is related with the closest 

centroid and divides the respondents into following groups, validated by Elbow 

method: Low: VSAI < 0; Medium: 0.0–1.0; High: > 1.7.  

The clusters are shown by their names in the table 4. 
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Table 4. Distribution of cluster analysis 

Farms 1–10 Farms 11–20 Farms 21–30 

–1.068 [Low] –0.316 [Low] 0.489 [Medium] 

–0.715 [Low] –0.499 [Low] 0.622 [Medium] 

–0.662 [Low] –0.431 [Low] 0.722 [Medium] 

–0.723 [Low] –0.387 [Low] 0.775 [Medium] 

–0.736 [Low] –0.710 [Low] 0.713 [Medium] 

–0.809 [Low] –0.403 [Low] 1.053 [Medium] 

–0.582 [Low] –0.873 [Low] 1.899 [High] 

–0.709 [Low] –0.509 [Low] 1.821 [High] 

–0.548 [Low] –0.194 [Low] 1.760 [High] 

–0.412 [Low] –0.445 [Low] 1.926 [High] 

Source: own calculations 

 

Analysis of interconnected systems for resilience in smallholder agriculture: 

climate-smart and vulnerably smart approaches is shown in table 5.  

Results and discussion  

The results of the factor analysis show that the digital vulnerability of smallholder 

farms in the Pazardzhik region has a unique structure. The Principal Component 

Analysis (PCA) method was used to identify four major components, which 

collectively account for the overall variation in the dataset. The first two factors 

alone can explain over 60% of the total variability, indicating that over half of the 

differences between farms can be explained by two prominent patterns of digital 

behavior: the degree of overall digital advancement and the tension between market 

orientation and environmental sustainability. 

The first part factor analysis related with the smart agriculture brings factors related 

to market access, automation, and production efficiency. This statement fits with 

the modern view of smart agriculture as a socio-technical system that combines 

advances in organizations, economics, and technology, not just a bunch of 

technologies (Klerkx et al., 2019). It also points out that farms with more resources 

and stable economies are more likely to get more digital skills. 
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Table 5. Explanation of factors 

Factor What is measuring Main implementations 

General digital activity – 

efficiency, automation, market 

Production, savings, productivity Water sensors, lower 

costs, higher yields 

Puts ecology against market Puts 

automation against ecology  

Technological equipment and 

management 

Drones, IoT, automatic 

irrigation 

Puts automation against ecology 

Remaining specific information 

Market presence, trade Online sales, digital 

logistics 

Remaining specific information Environmentally friendly 

practices and monitoring 

Reduced fertilizers, digital 

soil and water monitoring 

Source: own calculations 

The second part makes clear the conflict between market integration and 

sustainability. Some farms focus on environmental practices and monitoring, but as 

well part of them focus on digital logistics and business channels. This statement is 

similar to what Carolan (2020) found, where he pointed out that digitalization in 

agriculture makes existing socioeconomic gaps worse, especially in rural areas with 

poor infrastructure, little institutional support, and low levels of digital literacy. This 

exacerbation of inequality can hinder the overall development of these 

communities, limiting their access to essential resources and opportunities for 

growth. As a result, targeted interventions are necessary to ensure that all farmers 

can benefit from technological advancements. In fragile agricultural systems, these 

kinds of dynamics are common because farmers' strategies, skills, and 

environments affect how they choose to use technology. 

The next part makes this difference by showing that automation and sustainability 

are not linked in a positive direction. This is explained by the fact that even though 

some farms have made technical progress, they haven't included environmentally 

friendly practices in their digital transformation. Santos and Neves (2022) say that 

many digital innovations make people more vulnerable by not taking into account 

the institutional and ecological context. 

Despite having a lower explanatory power, the fourth component is linked to 

resource sustainability and environmental monitoring. The three pillars of the 

Climate-Smart Agriculture (CSA) framework – productivity, resilience, and the 

preservation of natural resources – are represented in this component (FAO, 2013; 

Lipper et al., 2014). 

All things considered, the factor analysis demonstrates that technology access by 

itself is insufficient to adequately explain the complex nature of digital vulnerability 

in agriculture. Different socioeconomic contexts, different levels of adaptive ability, 

and different development strategies all have an impact on it. 
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After the factor analysis, based on VSAI was performed a cluster analysis which 

will help to show the level of digtalization of the farmers by actually seeing their 

current status. On the figure 1 is shown the actual distribution according to the data. 

 

 

Figure 1. Cluster distribution 

 

The data confirms that only a small part of the farms are digitally well developed 

and they apply and use a digital technology in agricultural activities. The major 

group is 66% of the sample and they are not using digital technologies. The 

transitional group is showing that 20% of the respondents have a real chance to 

transform into a higher group. Cluster 1 (low digitalization, 66%) is distinguished 

by consistently low scores for each of the four elements. Low use of automation, 

digital productivity tools, and market linkage was indicated by these farms' low PC1 

scores. Their lack of use of digital technology for environmental monitoring and 

sustainability is further supported by their weak link with PC4. The productivity 

and automation loadings in PC2 and PC3 are negative, which indicates that smart 

solutions are not sufficiently integrated and are fragmented. This organization 

supports the idea of Vulnerably Smart Agriculture, which holds that structural 

impediments prevent technology access from converting into resilience. Cluster 2 

(moderate Digitalization: 20%) has modest results, showing a partial integration of 

digital instruments for productivity and market access, especially in PC1 and PC2. 

However, their relatively lesser loadings on PC3 and PC4 suggest that automation 

and ecological digitization are still in their early stages. These farms are about to 

undergo a digital transition; they are ready for more advanced, intelligent methods, 

but they are still limited by infrastructure or capacity (Carolan, 2020). The trade-off 

between ecological attention and market connectedness that PC2 highlights is 

66%

20%

13,33%

Low Medium High
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especially relevant to this group, as they seek to balance sustainability and 

competitiveness. Automation, digital efficiency, and environmental monitoring are 

significantly integrated, as indicated by the significant alignment between Cluster 

3 (Highly Digitalized, 14%) and PC1 and PC4. These farms actively use integrated 

smart farming systems and are prime examples of Climate-Smart Agriculture 

(FAO, 2013; Lipper et al., 2014). Furthermore, the notable positive loadings on PC3 

suggest that automation is not isolated but rather incorporated into a broader digital 

strategy. This group serves as an example of how comprehensive and context-aware 

digital transformation can enhance sustainability and resilience in rural areas. 

Conclusion 

The study illustrates how the unequal digital transformation of Pazardzhik's 

smallholder farms is significantly impacted by structural limitations. Using PCA, 

four key characteristics were identified, and two main factors – the trade-off 

between ecological practices and market orientation and overall digital participation – 

accounted for over 60% of farm variance. According to the article, while some 

farms have complex digital tools, most are either environmentally conscious or 

technologically isolated without digital integration. This illustrates how, if local 

contexts are neglected, digitalization may worsen inequality, which is in line with 

the concept of Vulnerably Smart Agriculture. According to a cluster analysis, 66% 

of farms are categorized as low to medium digitalized, while only 13% of farms are 

highly technologically advanced. 
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