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INTERCONNECTED SYSTEMS FOR RESILIENCE
IN SMALLHOLDER AGRICULTURE: CLIMATE-SMART
AND VULNERABLY SMART APPROACHES
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Abstract

The fast transition of agricultural systems in response to climate change, market instability, and
resource depletion has resulted in new paradigms such as Climate-Smart Agriculture (CSA) and the
more recently mentioned Vulnerably Smart Agriculture (VSA). The idea of "smart agriculture" is
increasingly used to describe a collection of technologies meant to improve agricultural
performance, including sensor networks, autonomous machinery, Al-powered decision systems, and
precise input management. However, smallholders' capacity to embrace such techniques is still
unknown due to structural constraints such as low capital, low educational levels, a lack of
infrastructure, and institutional neglect. These barriers are especially significant in areas sensitive to
weather extremes and characterized with small scale farming, such as Bulgaria's Pazardzhik district,
where this study was conducted. The publication's aim is to use factor analysis transformed into a
cluster analysis. The findings are based on empirical data ot the current state of the digitalization
level of the small farms in the Pazardzhik and the level of transition to smart agriculture. Examintion
of their ability to adapt Vulnerably Smart Agriculture (VSA) and Climate-Smart Agriculture (CSA)
are presented.

This article analyzes the main challenges faced by small farms in their transition to smart agriculture,
drawing on actual field research done among 30 smallholder farms with an annual production of less
than €9000. The empirical data shed light on the distinct weaknesses and technological constraints
of small producers, demonstrating how smart agriculture may help to be tailored — not only
technologically, but also socially and economically — to their respective environments.The
incorporation of CSA and VSA into these systems provides a new theoretical and practical paradigm
for developing resilience at the micro level. This includes not just lowering emissions and improving
yields, but also promoting livelihood diversification, off-farm revenue creation, and locally specific
adaption techniques. As global climate threats increase, understanding the circumstances under
which smallholders might move to more resilient systems becomes crucial to long-term food
security. This article was financially supported by the UNWE Research Programme (Research Grant
No. NID NI-5/2024/A).
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Introduction of the CSA and VSA

Agriculture is now seen as part of a broader global picture that includes
environmental protection, resource-saving technologies, lowering the need for raw
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materials, economic efficiency, etc., whereas only a few years ago the agricultural
sector was discussed and studied in terms of specific economic characteristics and
cultivation technologies (Rose et al., 2021; Doitchinova et al., 2019). This shift reflects
the increasing alignment of agriculture with the sustainability agenda, especially under
the pressures of climate change and ecological degradation (FAO, 2013).

Finally, in the past ten years, the emphasis has switched to new and creative
approaches, some of which are digital, with the goal of attaining sustainability at
the territorial level as well as in other areas of sustainability, such as the ecological,
cultural, social, and economic effects (Klerkx et al., 2019; Eastwood et al., 2017).
The integration of digital tools in agriculture has enabled more precise and localized
management practices, further supporting the multidimensional nature of
sustainability in rural areas (Wolfert et al., 2017; Doitchinova, & Stoyanova, 2024).
The agriculture sector is frequently criticized for having less advanced technology
than other economic sectors like industry. For instance, certain businesses and
processes are already moving toward the 5.0 scale, whereas the agricultural sector
is mostly at level 2.0 and just a tiny part has reached level 4.0 (Bacco et al., 2019).
This technological lag is partly due to fragmented land ownership, aging farming
populations, and limited digital infrastructure in rural areas (Zhang et al., 2021).
This calls for a new perspective on agriculture because the need to quickly adapt
agricultural systems to climate change, market volatility, and resource depletion has
given rise to new paradigms like Climate-Smart Agriculture (CSA). CSA emphasizes
resilience, productivity, and mitigation of greenhouse gases (Lipper et al., 2014).
More and more, the term “smart agriculture” is being used to refer to a group of
technologies designed to enhance agricultural performance, such as sensor
networks, self-governing equipment, artificial intelligence (Al)-driven decision-
making systems, and accurate input management (Kamilaris et al., 2018; Liakos et
al., 2018). These technologies enable data-driven farming practices that not only
increase efficiency but also contribute to environmental goals, including reduced
emissions and optimized resource use.

The publication's main goal is to analyze the main challenges that small farms in
the Pazardzhik region face when transitioning to smart agriculture, including their
adaptability to the concepts of Climate-Smart Agriculture (CSA) and Vulnerably
Smart Agriculture (VSA), using empirical data and factor analysis.

Smart Agriculture is most commonly connected with the usage of the Internet of
Things (loT), precision agriculture (PA), artificial intelligence (Al), drones,
sensors, blockchain, and cloud databases. Researchers in the area underline that this
will result in optimized resource usage and enhanced tolerance to climate change
(Wolfert et al. 2017). According to Klerkx et al. (2019), smart agriculture is more
than simply a technology package; it is also a socio-technical system that includes
connections between farmers, ICT businesses, service providers, and politicians.
The primary advantages are focused at lowering resource costs (water and
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fertilizers), boosting yields, improving decision-making, implementing sustainable
risk management, and others. In addition to the previously mentioned theory,
Carolan (2020) argues that digitization in agriculture has two aspects: on the one
hand, it creates opportunities for sustainable production; on the other hand, by
expanding its reach geographically, it can exacerbate the digital divide. In rural
areas with low levels of educational attainment, restricted Internet access, and
insufficient institutional support, this disparity will be especially noticeable.In
addition to this idea, the new notion of Vulnerably Smart Agriculture is developed,
which is based on unrealistic assumptions about digitization. It refers to instances
in which digital advances fail to address social, institutional, and geographical
realities, and in certain cases, exacerbate inequality (Santos and Neves, 2022;
Paycheva, 2022 Harizanova—Metodieva, & Metodiev, 2013). Eastwood et al.
(2021) and their colleagues identify four major shortcomings that also serve as
indicators of vulnerability: technological vulnerability, economic vulnerability,
social vulnerability (digital illiteracy), and ecological vulnerability. According to
Fraser et al. (2022), in their publication, the implementation of "smart" technologies
in rural areas is highly unbalanced between farmers with high investment
opportunities and access to expert support, and small and elderly farmers remain on
the periphery of the digital transition. This deepens inequality and problems in rural
areas. In this setting, the Vulnerably Smart Agriculture Index (VSAI) becomes a
multifaceted, composite diagnostic tool. It seeks to quantify the extent of farm
integration into smart agricultural systems while paying close attention to structural
constraints, risk exposure, and gaps in adaptation. Digital divide theory (van Dijk,
2005), climate-smart agriculture (FAO, 2013), innovation systems theory (Hall et
al., 2001), and agricultural vulnerability assessment frameworks (Turner et al.,
2003; IPCC, 2014) are some of the theoretical approaches that provide the
conceptual foundation of the VSAL.

Main methods and data

The publication's aim is to use factor analysis transformed into a cluster analysis
based on empirical data to examine the current state of the digitalization level of the
small farms. The goal is to track the degree of smart agriculture adoption, including
their capacity to adopt the concepts of Climate-Smart Agriculture (CSA) and
Vulnerably Smart Agriculture (VSA).The research was conducted in December
2024 among small farms in the Pazardzhik municipality with the aim of assessing
the digital vulnerability of farms with different levels of digitalization. With an
emphasis on smallholder farms with an annual production value of less than €9000,
which is the legal definition of small farms in Bulgaria, the sample of 30 farms was
selected at random from the Pazardzhik municipality.The region's present
agricultural structure, where most farms are fragmented, family-owned, and have
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low levels of capitalization, is reflected in the tiny sample size.The statistics are
based on an assessment of Likert-based criteria on the main elements of vulnerable
agriculture, which include production efficiency, market connection, technical
equipment, and environmental monitoring, in accordance with the theoretical
framework. This study employed the Principal Component Analysis (PCA) method,
which transforms the original variables into new, uncorrelated linear combinations
(components) that explain the greatest amount of variance. The number of factors
was determined using Kaiser's criteria, which stipulate that only factors with
eigenvalues greater than one are retained (Kaiser, 1960). When the chosen
components account for more than 40-50% of the total variation, the model is
considered reasonable. According to the data, the follow assumption after
proceeding factor analysis is made in table 1.

Table 1. Loadings of factors

Factor Explanations Loadings

PC1 General digital activity — efficiency, automation, market 33.5%
PC2 Puts ecology against market Puts automation against ecology 27.0%
PC3 Puts automation against ecology Remaining specific information 25.1%
PC4 Remaining specific information 14.3%

Source: own calculations

Together, the first two variables (PC1 and PC2) account for 60.5% of the total
appearance. Thus, more than half of the variations across farms may be explained by
two primary axes of difference (such as “digital progress” and “ecology vs. market”).
Factors loadings are summarized in the following table 2.

Table 2. Cross measurement of factors

Cross meassurements PC1 PC2 PC3 PC4
Digital Productivity & Resource Optimization 0.572 | -0.231 | -0.730 | —0.302
Technological Enablement for Automation 0.556 | -0.341 | 0.634 | -0.415
Market Access & Value Chain Enhancement 0.377 | 0.897 0.068 0.221
Sustainability & Environmental Monitoring 0.481 | -0.124 | -0.234 | 0.829

Source: own calculations

Based on the factor analysis, four main dimensions were identified that describe the
differences between the surveyed farms in terms of digitalization. The first
dimension covers efficiency and resource optimization, the second dimension is
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based on automation and technological equipment, the third dimension describes
access to markets and digital trade, including online platforms and logistics. The
last dimension focuses on sustainability and environmental monitoring, through
resource-saving and environmental protection practices. Each of these factors is the
result of grouping similar survey questions and explains a different aspect of the
digital vulnerability of farms. Once the factor analysis has been conducted, we will
use the data from it for the 4 factors to calculate the respondent's responsiveness
index using the following formula:

1
VSAIL; = 7 (Factorl + Factorz + Factors + Factora )

This index shows (table 3) the level of digitalization and the higher the number, the
more digitalized the farm is. It is understood, it is clarified that the data is based on
the responses of 30 managers of small farms, randomly selected by random
sampling.

Table 3. VASI
Farms 1-10 Farms 11-20 Farms 21-30
-1.068 -0.316 0.489
-0.715 -0.499 0.622
—-0.662 -0.431 0.722
-0.723 -0.387 0.775
-0.736 -0.710 0.713
-0.809 —-0.403 1.053
-0.582 -0.873 1.899
-0.709 —-0.509 1.821
-0.548 -0.194 1.760
-0.412 -0.445 1.926

Source: own calculations

According to the data of the VASI index of each farm was conducted cluster
analysis (K-means method), which will devide the respondents into 3 groups- low
digitalization, medium and high. Each VASI result is related with the closest
centroid and divides the respondents into following groups, validated by Elbow
method: Low: VSAI < 0; Medium: 0.0-1.0; High: > 1.7.

The clusters are shown by their names in the table 4.
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Table 4. Distribution of cluster analysis

Farms 1-10 Farms 11-20 Farms 21-30
-1.068 [Low] —0.316 [Low] 0.489 [Medium]
—0.715 [Low] —0.499 [Low] 0.622 [Medium]
—0.662 [Low] —0.431 [Low] 0.722 [Medium]
—-0.723 [Low] —0.387 [Low] 0.775 [Medium]
—0.736 [Low] —0.710 [Low] 0.713 [Medium]
—0.809 [Low] —0.403 [Low] 1.053 [Medium]
—0.582 [Low] —0.873 [Low]

—0.709 [Low] —0.509 [Low]
—0.548 [Low] —0.194 [Low]
—0.412 [Low] —0.445 [Low]

Source: own calculations

Analysis of interconnected systems for resilience in smallholder agriculture:
climate-smart and vulnerably smart approaches is shown in table 5.

Results and discussion

The results of the factor analysis show that the digital vulnerability of smallholder
farms in the Pazardzhik region has a unique structure. The Principal Component
Analysis (PCA) method was used to identify four major components, which
collectively account for the overall variation in the dataset. The first two factors
alone can explain over 60% of the total variability, indicating that over half of the
differences between farms can be explained by two prominent patterns of digital
behavior: the degree of overall digital advancement and the tension between market
orientation and environmental sustainability.

The first part factor analysis related with the smart agriculture brings factors related
to market access, automation, and production efficiency. This statement fits with
the modern view of smart agriculture as a socio-technical system that combines
advances in organizations, economics, and technology, not just a bunch of
technologies (Klerkx et al., 2019). It also points out that farms with more resources
and stable economies are more likely to get more digital skills.
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Table 5. Explanation of factors

Factor What is measuring Main implementations

General digital activity — Production, savings, productivity |Water sensors, lower

efficiency, automation, market costs, higher yields

Puts ecology against market Puts | Technological equipment and Drones, 10T, automatic

automation against ecology management irrigation

Puts automation against ecology | Market presence, trade Online sales, digital

Remaining specific information logistics

Remaining specific information | Environmentally friendly Reduced fertilizers, digital
practices and monitoring soil and water monitoring

Source: own calculations

The second part makes clear the conflict between market integration and
sustainability. Some farms focus on environmental practices and monitoring, but as
well part of them focus on digital logistics and business channels. This statement is
similar to what Carolan (2020) found, where he pointed out that digitalization in
agriculture makes existing socioeconomic gaps worse, especially in rural areas with
poor infrastructure, little institutional support, and low levels of digital literacy. This
exacerbation of inequality can hinder the overall development of these
communities, limiting their access to essential resources and opportunities for
growth. As a result, targeted interventions are necessary to ensure that all farmers
can benefit from technological advancements. In fragile agricultural systems, these
kinds of dynamics are common because farmers' strategies, skills, and
environments affect how they choose to use technology.

The next part makes this difference by showing that automation and sustainability
are not linked in a positive direction. This is explained by the fact that even though
some farms have made technical progress, they haven't included environmentally
friendly practices in their digital transformation. Santos and Neves (2022) say that
many digital innovations make people more vulnerable by not taking into account
the institutional and ecological context.

Despite having a lower explanatory power, the fourth component is linked to
resource sustainability and environmental monitoring. The three pillars of the
Climate-Smart Agriculture (CSA) framework — productivity, resilience, and the
preservation of natural resources — are represented in this component (FAO, 2013;
Lipper et al., 2014).

All things considered, the factor analysis demonstrates that technology access by
itself is insufficient to adequately explain the complex nature of digital vulnerability
in agriculture. Different socioeconomic contexts, different levels of adaptive ability,
and different development strategies all have an impact on it.
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After the factor analysis, based on VSAI was performed a cluster analysis which
will help to show the level of digtalization of the farmers by actually seeing their
current status. On the figure 1 is shown the actual distribution according to the data.

13,33%

B =

Blow Medium @High

Figure 1. Cluster distribution

The data confirms that only a small part of the farms are digitally well developed
and they apply and use a digital technology in agricultural activities. The major
group is 66% of the sample and they are not using digital technologies. The
transitional group is showing that 20% of the respondents have a real chance to
transform into a higher group. Cluster 1 (low digitalization, 66%) is distinguished
by consistently low scores for each of the four elements. Low use of automation,
digital productivity tools, and market linkage was indicated by these farms' low PC1
scores. Their lack of use of digital technology for environmental monitoring and
sustainability is further supported by their weak link with PC4. The productivity
and automation loadings in PC2 and PC3 are negative, which indicates that smart
solutions are not sufficiently integrated and are fragmented. This organization
supports the idea of Vulnerably Smart Agriculture, which holds that structural
impediments prevent technology access from converting into resilience. Cluster 2
(moderate Digitalization: 20%) has modest results, showing a partial integration of
digital instruments for productivity and market access, especially in PC1 and PC2.
However, their relatively lesser loadings on PC3 and PC4 suggest that automation
and ecological digitization are still in their early stages. These farms are about to
undergo a digital transition; they are ready for more advanced, intelligent methods,
but they are still limited by infrastructure or capacity (Carolan, 2020). The trade-off
between ecological attention and market connectedness that PC2 highlights is
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especially relevant to this group, as they seek to balance sustainability and
competitiveness. Automation, digital efficiency, and environmental monitoring are
significantly integrated, as indicated by the significant alignment between Cluster
3 (Highly Digitalized, 14%) and PC1 and PC4. These farms actively use integrated
smart farming systems and are prime examples of Climate-Smart Agriculture
(FAO, 2013; Lipper et al., 2014). Furthermore, the notable positive loadings on PC3
suggest that automation is not isolated but rather incorporated into a broader digital
strategy. This group serves as an example of how comprehensive and context-aware
digital transformation can enhance sustainability and resilience in rural areas.

Conclusion

The study illustrates how the unequal digital transformation of Pazardzhik's
smallholder farms is significantly impacted by structural limitations. Using PCA,
four key characteristics were identified, and two main factors — the trade-off
between ecological practices and market orientation and overall digital participation —
accounted for over 60% of farm variance. According to the article, while some
farms have complex digital tools, most are either environmentally conscious or
technologically isolated without digital integration. This illustrates how, if local
contexts are neglected, digitalization may worsen inequality, which is in line with
the concept of Vulnerably Smart Agriculture. According to a cluster analysis, 66%
of farms are categorized as low to medium digitalized, while only 13% of farms are
highly technologically advanced.
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