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Abstract

Development of Artificial Intelligence (AI) methods and their applications are becoming im-
portant drivers of innovations which significantly affect all areas of economic activities including
agriculture. The aim of the paper is to examine how Al solutions applied in agriculture can influence
not only production practices, but the sector Total Factor Productivity (TFP). First, types of Al sys-
tems and areas of their use in agriculture and related activities are presented. Second, an attempt is
made to indicate effects of such technological changes for agricultural TFP worldwide.
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Introduction

Artificial Intelligence (Al) is one of the most striking technology developments
which has recently inspired thinking about potential innovations in various sectors
of the economy. This includes agriculture where opportunities for innovative de-
velopment based on implementations of Al solutions are numerous (Bannerje et al.,
2018, Eli-Chukwu, 2019). Al while itself discussed broadly both in literature and
on business forums, seems to be underestimated by agricultural economists and
even more by the agricultural extension service and farmers themselves. Thus,
strengthening awareness among all stakeholder groups regarding possible uses of
Al methods in agricultural production and benefits of adopting them is important to
understand properly this process of unavoidable technological changes we have
been recently facing.

Artificial Intelligence (AI) cannot be clearly and concisely defined as a scientific
term, nevertheless is well enough rooted as a subject matter for discussion and anal-
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ysis both in theory and practice (Russell and Norvig, 2020). The term Al has be-
come used since 1955 when John McCarthy and team of researchers established
scientific foundation for its meaning and understanding (McCarthy et al., 1955).
Over the next decades understanding of Al evolved along with the programming
and computer technology advancements. Al systems both real and hypothetical can
be categorized into three types (O'Carroll, 2017):

- narrow intelligence (ANI), also called weak Al having limited range of abil-

ities;

- general intelligence (AGI) which can be considered equivalent to human

capabilities;

- superintelligence (ASI) being more capable than a human.

While there are a lot of examples of successfully implemented ANI solutions,
potential developments of AGI and ASI are more a matter of speculative imagina-
tion or futuristic visions. For the purpose of clarifying our considerations we adopt
a definition presented by O'Carroll (2017) who described it as a "branch of com-
puter science that endeavours to replicate or simulate human intelligence in a ma-
chine, so machines can perform tasks that typically require human intelligence" in-
cluding planning, learning, reasoning, problem solving, and decision making.

The aim of the paper is to examine how Al solutions applied in agriculture can
influence not only production practices, but the sector Total Factor Productivity
(TFP). Considering potentially widespread adoption of Al solutions in agriculture
it seems to be plausible to hypothesize that effects of such technological changes
should be positive for agricultural TFP worldwide. This issue is discussed theoret-
ically using macroeconomic production function and the Solow residual frame-
work. Also, based on the Global Al Innovation Index Report country rankings and
agricultural TFP data series indices provided by the United States Department of
Agriculture we look for an empirical evidence supporting the proposed hypothesis.

A brief overview of Al applications in agriculture

Various types of Al systems have been used in agriculture since relatively long
time ago. The rule based expert systems were extensively used in the 1980s and
early 1990s. Next, artificial neural network and fuzzy logic based systems have be-
come dominant solutions. At present, hybrid systems such as neuro-fuzzy or image
processing coupled with artificial neural networks are more and more frequently
applied. Al solutions impended in agriculture are often of a hybrid nature. In other
words, more than just one method or technique is employed in the systems devel-
oped encompassing a combination of decision making process and automatization
of work to be performed.

Examples of Al applications in agriculture are numerous. They are used in such
activities as general crop management, pest management, disease management,
weed management, agricultural product monitoring and storage control, soil and
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irrigation management, and yield prediction. Current Al applications represent ad-
vanced tools which enable implementation of precision agriculture at low cost
(Bannerje et al., 2018). They are more automated and accurate systems acting in
real time. Apart from supporting farm production Al methods and techniques are
applied in other related activities. Examples include agricultural price forecasting,
marketing and electronic trading by farmers using special applications allowing im-
plementation a quick go-to-market strategy (Figiel, 2019, Khandelwal and Chav-
han, 2019).

Al applications in agriculture constitute a quickly growing market. In 2019 its
overall size accounted for almost 1.1 billion U.S. dollars and is expected to grow to
more than 3.8 billion U.S. dollars by 2024. Al systems are deployed mainly in field
farming, although livestock and indoor farming are considerable segments of the
market (Fig. 1).
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Figure 1. Structure of the global Al market in agriculture by farming type in 2019 and 2024*

Source: https://www.statista.com/statistics/1174399/global-ai-in-agriculture-market-by-farming-
type/ (Date: 2022.04.04).
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Theoretical framework for capturing Al impact on agricultural TFP

Agriculture belongs to economic sectors in which work performed by people can
be quite easily robotized and many tasks requiring human intelligence can be com-
pleted using Al solutions (Kaplan, 2016). Agriculture being inevitably exposed to
implementation of such technologies will experience both labor substitution and
higher labor productivity effects. Widespread implementation of various Al solu-
tions in agriculture can be viewed as a technical change and analyzed using macro-
economic production function and total factor productivity (TFP) theoretical frame-
work.

First, let consider the textbook Solow model (Solow, 1957):

Y (&) = [K®OI*[A@®L®)] (1
SR(t) =%—(a%+(1—a)%) Q)

where:

Y (t) — output (the GDP in year ¢);

K (t) — capital in year ¢,

A(t) — multifactor productivity in year ¢ (technical change or shifts in production
function);

L(t) —in year ¢

SR(t) — Solow residual;

o — equation parameter;

Yy 9K oL . .. .

—, —, — — time derivatives of Y, K, and L, respectively.
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Second, let refer to the Solow model augmented with a human capital term, what
can be written as follows (Mankiw et al., 1992):

Y(t) = [KOI“[H®OVP[A@®L®] P 3)
5R(t)=%—<a%+ﬁ%+(1—a—ﬁ)%) (4)

where:
H(t) — stock of human capital in year ¢;
p — additional equation parameter;
other terms — the same as in (1) and (2).
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Inclusion of H(t) in equations (3) and (4) means that the effect of changes in
human capital is transferred from the Solow residual to capital accumulation, thus,
mathematically the residual is smaller in the textbook Solow model. Hypothetical
implications of widespread use of Al for agricultural Total Factor Productivity
(TFP) can be viewed as expected changes (positive or negative) in the model terms.
Considering the nature of Al applications in agriculture it seems plausible to sur-
mise that their impact on all terms in equation 4 but labor term will be positive.
Such deductive reasoning comes from meta-analysis of observed and discussed in
literature influences of Al development and its applications on agricultural produc-
tion practices (Bannerje et al., 2018, Eli-Chukwu, 2019, Chu et al., 2019, Elug-
badebo and Johnson, 2020, Jha et al., 2019, Khandelwal and Chavhan, 2019, Moal-
lem et al., 2017, Unay et al., 2011)

Diminishing role of physical labor in agricultural production has been observed
everywhere in the world and Al development will additionally strengthen this is
trend due to substitution effect, therefore, it will have a negative influence on the
labor term. The other model terms are supposed to be influenced positively due to
productivity effect, investments in physical capital, and accumulation of human
capital resulting from education. A general mechanism of Al positive impacts on
agriculture is diagrammatically presented in Figure 2.

Al applications help optimize use of inputs, both agricultural (seeds, feed, etc.)
and nonagricultural (fertilizers, chemicals such as herbicides and pesticides, and
energy), consequently leading to more efficient use of resources (labor, land, water)
and higher factor productivity due to the increased yields. Also, the role of Al so-
lutions in monitoring negative externalities (water pollution, gas emissions) and
protection of the natural environment cannot be omitted as an important contribu-
tion to foster sustainable growth of agricultural production (Geli et al., 2019).
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Figure 2. Benefits of using Al solutions in agricultural production
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Source: own elaboration.

Countries Al development levels and agricultural TFP

Countries differ regarding the Al development level. Taking into account such
criteria as: Al infrastructure, Al research and development, and Al industrial appli-
cation, the 10 top-ranking countries are the U.S., China, South Korea, Canada, Ger-
many, UK, Singapore, Israel, Japan, and France. The scores countries achieved in
this ranking, presented in The 2020 Global Al Innovation Index Report, co-drafted
by the Institute of Scientific and Technical Information of China and the Peking
University, are shown in Figure 3. The United States is a unquestionable leader of
the ranking with China coming second. These two countries are ahead of the other
surveyed countries with scores 47 and 12% above the average for the TOP 10, re-
spectively (see the horizontal line).

I I I I I | 36.345.2

<
&

70 . 663

60
50
40
30
20
10

Figure 3.

Source: https://www.chinadaily.com.cn/a/202108/23/WS6122d245a310efalbd66a545.html
(Date: 2022-06-07).

Impact of the Al applications on economic growth is multidimensional and com-
plex. Intuitively, knowing that widespread use of AI methods becomes reality, it
seems to be obvious to expect positive effects of such technological change. How-
ever, the issue is that Al applications influence basically all areas of human activi-
ties, hence, separating pure productivity effects of Al uses without methodological
reservations is sort of impossible. In cross-country analysis one of the problems is
a global diffusion of innovations among sectors and countries. Nevertheless, it
needs to be noticed that the United States and China are the two largest world agri-
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cultural producers while Germany, Japan, and France are among the TOP 10 agri-
cultural producing countries. More importantly, values of the index of Agricultural
Total Factor Productivity (TFP) calculated for the period 2016 — 2019 indicate
a significant agricultural TFP growth in all that countries. For each country every
year the index value (year 2015=100) was higher than 100 with average value for
the whole set of the panel observations (4x5) equal to 104.2. This implies that agri-
cultural sectors of these countries experienced noticeable productivity growth dur-
ing the period considered. Whether it is just a coincidence, or indirect evidence
showing the positive impact of Al on agricultural TFP should be considered as an
open question.

Conclusion

The recent Al based technological advancements and solutions can greatly im-
prove efficiency of farming practices regarding control of crop diseases, pest and
weed management, and irrigation and water management. It can be stated that ap-
plications of Al in agriculture lead to both substitution and more efficient use of the
labor remaining in agriculture. Also, physical asset and land and water resources
can be used more efficiently. This is why higher agricultural TFP can be achieved.
In fact, there appears to be a connectedness between the advancement level of Al
industries in countries belonging to the TOP 10 in this area and their agricultural
TFP dynamics observed over the last few years. Incidentally, five of these countries
(China, the United States, Germany, Japan, and France) are in the group of TOP 10
largest agricultural producers in the world. This simple observation cannot be ig-
nored considering the share of these countries in the global agricultural production.
However, an in-depth analysis is required to provide convincing empirical evidence
on the positive connectedness between country Al development level and its agri-
cultural TFP.
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