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Abstract

This text is a detailed review of the 
academic literature on interval, quantile, 
and density forecasting. Confidence and 
prediction intervals and different approaches 
to their estimation are discussed. The 
concept of quantile regression is examined 
as a standalone method as well as an initial 
step to generating density forecasts. Various 
methods for generation and evaluation of 
density forecasts and some noteworthy 
applications are considered.
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1. Introduction

Towards the end of the 19th century, 
there was a transition from point 

estimates to distribution estimates in the 
field of statistics according to Stigler (1975). 
Gneiting (2008) describes a similar shift in 
interest from point forecasts to probabilistic 
forecasts across many fields, and economics 
makes no exception. The review of 
forecasting literature done by Diebold and 
Lopez in 1996 reveals that when it comes 
to forecast evaluation, the topic of point 
forecast evaluation dominated the field at the 
time. Few articles were concerned with the 

evaluation of prediction intervals (Chatfield, 
1993; Christoffersen, 1998) or probability 
forecasts (Wallis, 1993; Clemen et al., 1995). 
Furthermore, Diebold et al. (1998) believe that 
until the advent of quantitative finance and 
risk management, there was little demand for 
interval or density forecasts within the field 
of economics. The practice of forecasting 
in itself is an attempt to study an uncertain 
future, and probabilistic forecasts expressed 
as probability distributions over expected 
future realizations are a prime way to measure 
the degree of uncertainty.

According to the engineering and machine 
learning literature, uncertainty can be 
classified into two broad categories when it 
comes to forecasting in general – aleatoric 
and epistemic (see Hora, 1996, Faber, 2005, 
Dutta, 2013, Shaker and Hüllermeier, 2020, 
and Hüllermeier and Waegeman, 2021). 
Aleatoric uncertainty relates to the inherent 
uncertainty in the data-generating process 
and the uncertainty in its measurement. Its 
main property is its irreducibility in principle. 
Epistemic uncertainty relates to the limitations 
and knowledge of the forecaster and can 
be separated into two main subcategories –  
model uncertainty and approximation 
uncertainty (Yanchev, 2023). Approximation 
uncertainty relates to the uncertainty 
surrounding the model parameters and can 
be expressed as the difference between a 
chosen hypothesis or model and the optimal 
hypothesis within the chosen hypothesis 
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space (family of models). Model uncertainty 
refers to the choice of the hypothesis space 
or family of models in general and can be 
expressed as the difference between the 
ground truth (or the population model) and 
the optimal hypothesis within the hypothesis 
space. Epistemic uncertainty can be reduced 
by acquiring more knowledge and information, 
and in the context of forecasting, this might 
include accumulating more data and a 
greater number of predictor variables. The 
forecasting methods discussed in the rest of 
the text will be considered with respect to this 
classification.

The aim of this text is to perform a detailed 
review of methods for generating interval, 
quantile and density forecasts. Confidence and 
prediction intervals and different approaches 
to their estimation are discussed. The 
concept of quantile regression is examined 
as a standalone method as well as an initial 
step to generating density forecasts. Various 
methods for generation and evaluation of 
density forecasts are considered as well as 
some noteworthy applications.

2. Confidence and Prediction Intervals

Currently, in the field of forecasting the 
simplest way to measure uncertainty related 
to a forecast is via confidence and prediction 
intervals. Chatfield (1993) describes interval 
forecasts as consisting of upper and lower 
limits associated with a predefined probability. 
These upper and lower limits define the range 
in which a future value of the random variable 
would fall with some level of confidence.  
Hansen (2006) elaborates that interval 

1	  The explanation is taken from Hyndman’s blog post: https://robjhyndman.com/hyndsight/intervals/
2	  Mean response and predicted outcome are the values of the dependent variables calculated from the 

regression parameters and the independent variable. The values of the two model outputs are the same, but 
their hypothesized variances are different. This is the reason for the differences in the widths of the confidence 
and prediction intervals.

forecasts are often constructed around 
point forecasts as an additional measure 
of uncertainty. Indeed, as many forecasting 
methods are tailored towards generating 
point forecasts, calculating intervals is a 
straightforward way to quantify the uncertainty 
around such forecasts.

Going a step back, it is appropriate to 
review the terminology concerning confidence 
and prediction intervals. According to 
Hyndman (2013)1, the confidence interval 
is associated with a parameter (which can 
be a model parameter or a coefficient) and 
contains with some degree of confidence the 
true parameter of the population. Based on 
this description we could assume that the 
confidence interval is a measure of epistemic 
uncertainty and more specifically what was 
called earlier approximation uncertainty since 
it describes how certain we are about the 
range of values a certain parameter might 
take and in general the model’s ability to 
approximate the data. On the other hand, 
prediction intervals are associated with a 
random variable to be observed in the future, 
with a specified probability of the random 
variable lying within the interval (Hyndman, 
2013). Prediction intervals account for both 
the aleatoric uncertainty inherent in the data 
and the epistemic approximation uncertainty 
because it already contains the confidence 
interval for the mean response2, but also an 
additional term accounting for the variability 
of the dependent variable observed in the 
sample. According to the literature on the 
subject, the term prediction interval concerning 
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a point forecast should be equivalent to the 
term interval forecast. 

The summary outlined by Dybowski 
and Roberts (2001) will be used for the 
formulations. To be more specific let us define 
a linear regression forecasting task in matrix 
notation:

Ŷ = Xβ	 (1)

Where X is a vector of k predictors and 
a first column of ones, β is a vector of k+1 
regression parameters, and Ŷ is the vector of 
the target variable Y. The confidence interval 
for the estimated coefficients β would be 
respectively: 

	 (2)

Where  is the j-th diagonal 
of . In this way, one defines the 
uncertainty around the parameter which is 
reflected in both the confidence intervals 
around the mean response and the prediction 
interval. The confidence interval around 
a mean response, which is a confidence 
interval around the estimated value  given a 
vector of specific values of the independent 
variables  can be estimated in the following 
way:

	 (3)

where  is a column vector of specific 
values of the independent variables with a first 
element equal to one and  is formulated as:

	 (4)

and  is the critical value for 
the t-distribution for a specified significance 
level . The assumptions for using this 
formulation of the confidence interval include 

linearity and independently, identically and 

normally distributed errors, but deviations 

from the normality assumption are acceptable 

in the presence of large samples.

Similarly, to incorporate the aleatoric 

uncertainty around the target variable, 

another MSE term is added when calculating 

the prediction interval:

	 (5)

The additional term added in the prediction 

interval guarantees that the prediction interval 

is always wider than the confidence interval 

for the mean response. The assumptions 

for constructing the prediction interval in 

this way include linearity and independently, 

identically and normally distributed errors, but 

the formula depends strongly on the normality 

assumption.

This constitutes the most basic way to 

construct confidence intervals for simple 

linear regression. The two confidence intervals 

for the mean response and the prediction 

intervals are illustrated in Figure 1 below. The 

solid represents the regression line, the inner 

dashed lines represent the 95% confidence 

interval based on equation (3) and the outer 

dotted lines represent the 95% prediction 

intervals based on equation (5).
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Figure 1. Confidence and Prediction Intervals for Simple Linear Regression Using Randomly 
Generated Data
Source: Author

Numerous studies present generalized 
ways to deal with confidence and prediction 
intervals in different contexts. Cox (1975) 
established the calculation of parametric 
prediction intervals for large samples with 
applications in constructing approximate 
confidence intervals in empirical Bayes 
estimation.  Chatfield (1993) does a 
comprehensive review and comparison of 
different strategies for generating prediction 
intervals including using analytical solutions 
derived from fitted statistical models, 
approximate prediction interval formulas, 
analysis of the empirical forecasting errors, 
and via bootstrapping or simulation. Heskes 
(1996) provides a technique for calculating 
prediction and confidence intervals for feed-
forward artificial neural networks. Dybowski 
and Roberts (2001) also present a technique 
for calculation confidence and prediction 
intervals for feed-forward network models but 

also do a comprehensive bottom-up review 
of methods from the classical foundations, 
which in itself can be rather useful. Hansen 
(2006) focuses on refining the construction 
of interval forecasts, which incorporate 
parameter uncertainty and are applied to 
models where the error term is independent 
of the predictors. Lee and Scholtes (2014) 
develop a procedure for generating prediction 
intervals from Box-Jenkins (ARIMA) processes 
including additional external predictors. 

However, while intervals are a 
quantification of uncertainty they do provide 
limited information compared to probability 
distributions and do not allow for separating 
aleatoric and epistemic uncertainty in a 
straightforward way. Moreover, the calculation 
of intervals often requires strong parametric 
assumptions about the errors or residuals. 
Williams and Goodman (1971) argue that 
in practice often these assumptions do not 



113

Articles

hold. Therefore, non-parametric approaches 
like bootstrapping and simulations might be 
preferable when dealing with calculating 
prediction intervals. One such example is 
discussed in Staszewska-Bystrova (2011) for 
vector autoregressive models.

When it comes to evaluating and 
comparing interval forecasts, Christoffersen 
(1998) established a framework with 
optimality conditions for evaluation especially 
when some of the generic assumptions are 
violated. Askanazi et al. (2018) revisit the 
topic and discuss the difficulty of comparing 
and evaluating interval forecasts. They then 
proceed to advise abandoning the practice 
of interval forecasting in favor of density 
forecasting, which provides richer information 
and can be more readily compared using 
proper scoring rules.

3. Quantile Regression

Quantile regression is a concept, which 
dates back to the 18th century. However, it 
was more recently re-introduced by Koenker 
and Bassett (1978) and applied in economic 
analysis in various studies. According to 
Fitzenberger et al.,  (2002) who presented a 
number of economic studies which utilized 
quantile regression, it was not until the 1990s 
that the technique gained larger popularity 
among economists and econometricians.

More recent studies utilizing the method for 
forecasting are Ma and Pohlman (2008), who 
used quantile regression to forecast returns 
on financial markets and define an alternative 
approach to portfolio construction, Gaglianone 
and Lima (2011) construct forecasts 
using quantile regression on a sample of 
unemployment forecasts from the Survey of 
Professional Forecasters (SPF), Huang et 

al. (2011), who utilized quantile regression to 
predict the volatility of exchange rate on data 
from various countries, Maciejowska et al. 
(2016), who studied accuracy improvements 
from quantile regression forecasting of 
electricity spot prices on data from the British 
market, Wan et al. (2016), who performed 
wind power generation forecasting on data 
from Denmark. A disproportionate part of the 
literature related to using quantile regression 
for forecasting is on topics related to energy 
generation and load forecasting.

As Koenker and Bassett (1978) show, 
a task of sorting can be turned into an 
optimization problem. Just as finding a sample 
mean can be done by minimizing the sum of 
squared errors, finding the median can result 
from minimizing the sum of absolute errors. 
Koenker and Bassett (1978) further elaborate 
to show that an asymmetrical loss function 
which gives different penalties to positive 
and negative residuals, can yield any quantile 
for a given sample. Solving for the following 
equation (6) yields the τ-th quantile as its 
solution:

	 (6)

Where  and  is the tilted 
absolute value function, which can be seen 
in Figure 2, for a sample of size n. According 
to this equation, if  is equal 0.5, the equation 
will yield the median. Therefore, if the scalar 
 in equation (6) is replaced with a parametric 

function  and  is set to equal 0.5, 
one could estimate the conditional median 
function.

	 (7)

Setting  to different values will lead to the 
estimation of different conditional quantiles.
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Figure 2. Tilted absolute value function
Source: Author, based on Koenker (2005) 

In general, we would model the relation 
between the conditional quantile of the 
predicted output  and a vector of predictors 
X, for a given period t and a forecasting 
horizon h. To estimate the quantile regression 
of  on X, the regression  coefficients  
for a given parameter  is chosen to minimize 
the weighted absolute value of errors:

	 (8)

where 1(.) the indicator function, which 
subsets negative and positive errors, and T is 
the total length of the time series. The output 
of the model is the quantile of  conditional 
on the model input X:

	 (9)

This method allows one to estimate 
a quantile regression model to estimate 
any arbitrary quantile, conditional on the 
predictors. However, if one would like to 
estimate several different quantiles, one might 
run into the so-called crossing problem, which 
multiple scholars have run into and tried to 

address in one way or another (see Koenker, 
1984; Cole and Green, 1992; He, 1997; 
Bondell et al., 2010;  Rodrigues and Pereira 
2020). Among the more interesting solutions 
are the ones proposed by Bondell et al. (2010) 
and  Rodrigues and Pereira 2020.

Bondell et al. (2010) propose an additional 
term to the tilted cost function, which directly 
addresses the crossing quantile problem. The 
additional penalty for crossing quantiles can 
be described in the following way:

	 (10)

where  J is the number of quantiles sorted 
by the increasing value of . This term can 
be added to the loss function described in 
equation (8).

Rodrigues and Pereira (2020) propose 
a multi-output deep learning approach for 
estimating multiple conditional quantiles 
jointly again in order to address the 
problem of crossing quantiles. The authors’ 
proposition is to aggregate the loss function 
for the separate quantiles and evaluate it 
for all conditional quantiles jointly at every 
step of the optimization process. As the 
authors further elaborate in this case one 
could have a model that outputs an arbitrary 
number of quantiles, which allows one to 
construct a prediction interval of arbitrary 
coverage. However, one has to be careful, 
because following the authors’ method the 
prediction interval would account for aleatoric 
uncertainty alone, as it does not implicitly or 
explicitly contain information about model or 
approximation uncertainty.

It is outlined how one could use the 
conditional quantiles generated using a 
quantile regression as a measure of aleatoric 
uncertainty. However, it is possible to use 
the estimated conditional quantiles in a two-
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step procedure, to generate a full predictive 
distribution. A study mentioned above by 
Gaglianone and Lima (2011) constructs 
conditional quantiles based on ensemble 
forecasts from the SPF and then in a second 
step estimates nonparametrically a density 
forecast either using a method provided 
by Koenker (2005) or through quantile 
interpolation via a kernel. The kernel function 
used by the authors is the Epanechinikov 
kernel.

In a seminal paper, Adrian et al. (2019) 
used a two-step procedure of estimating 
conditional quantiles using quantile regression 
and fit a probability distribution to the 
estimated quantiles. The authors studied the 
distribution of economic growth in the USA 
with a focus on financial conditions and their 
dynamics during economic downturns. The 
authors pointed out a number of stylized facts 
about the conditional distribution of economic 
growth in the USA among which a strong 
negative correlation between the conditional 
mean and variance and a strong link between 
current financial conditions and future shifts 
in the lower tail of the distribution. Similar 
conclusions were confirmed by De Santis 
and Van der Veken (2020), who performed 
a similar empirical study including data from 
the beginning of 2020 and a separate dataset 
covering the Spanish flu pandemic period 
across a number of countries. Figueres and 
Jarociński (2020) also confirmed the same 
stylized facts identified by Adrian et al. (2019) 
for the Euro Area.

Quantiles of the conditional distribution of 
GDP growth in this framework are expressed 
as functions of the observed predictors. After 
generating the conditional quantiles, one 
could fit a probability distribution function 

3	 The .05, .25, .75, and .95 quantiles are used for the estimation of the conditional distribution.

to them to generate a density forecast. 
Adrian et al. (2019) propose using a skewed 
t-distribution for this purpose. To estimate 
the four parameters related to the skewed 
t-distribution, the problem can be formulated 
as a least squares optimization problem, 
using the estimated conditional quantiles3 and 
the inverse cumulative probability function:

	 (11)

where  (mean or location shift), 
 (standard deviation or scaling 

parameter),  (skewness parameter), 
and  (kurtosis or tail weight 
parameter).  is the inverse cumulative 
distribution function and  is the 
estimated quantile of  for a given  and 
conditional on X. This method can be used to 
estimate a density based on the conditional 
quantiles, or observed (unconditional) 
quantiles of a given economic indicator. 

The established procedure used by Adrian 
et al. (2019) is a two-step procedure. Its first 
step consists of a quantile regression model 
with a loss function similar to equation (8), 
which is used to generate conditional quantiles. 
The second step uses the conditional 
quantiles as an input and performs a least 
squares optimization between the input and 
the inverse CDF of the distribution of choice 
(in this case the skewed t-distribution). Adrian 
et al. (2019) apply two alternative approaches 
to demonstrate that the results from the 
two-step procedure are reliable. They use 
fully parametric and fully non-parametric 
approaches in order to compare and find 
very similar characteristics of the resulting 
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conditional distributions. They conclude that 
the two-step procedure is less parametric, 
less hard-coded, and perhaps offers greater 
versatility. 

The advantage of the approach by Adrian 
et al. (2019) compared to Gaglianone and 
Lima (2011) is that by assuming a specific 
family of distribution one can more concretely 
analyze the dynamics of the distribution 
parameters like variance, skewness, and 
kurtosis. The nonparametric approach allows 
for a more limited analysis in this respect. On 
the other hand, the nonparametric approach 
of Galianone and Lima (2011) does not 
necessitate making an assumption about the 
probability distribution of the data-generating 
process.

It is important to mention that the concept 
of the quantile is not only useful in the context 
of quantile regression. Quantile analysis is 
useful in many fields like economics, finance, 
and risk management and is a primary way 
to analyze an arbitrary distribution of data. 
For example, the estimation of unconditional 
quantiles can be used to construct intervals of 
arbitrary coverage around a random variable. 
Also, if bootstrapping is performed on a 
certain statistical parameter or model output, 
the quantiles of the resulting distribution can 
be used to construct confidence intervals. 
This only shows how intertwined the three 
general concepts discussed in this paper are.

By reviewing the literature on quantile 
regression and its application in economics, 
it was established that the estimation of 
conditional quantiles can be used both to 
construct arbitrary upper and lower bounds 
for a prediction interval or as an input 
for the estimation of density functions. 
Quantile regression seems to be somewhat 
underutilized in economics compared to other 

traditional methods, however, its practical 
benefits and versatility are undeniable.

4. Density forecasts

Early works in meteorology were the first 
to recognize the benefits of probabilistic 
forecasting. Cooke (1906) and Von Myrbach 
(1913) advocated for the need to attach 
a degree of confidence to meteorological 
forecasts. Later on in a seminal paper, 
Brier (1944) elaborated on the need for 
probabilistic forecasts, which led to the 
way to gradual adoption of probabilistic 
methods in meteorology. For several 
decades, meteorology researchers worked 
towards developing methods for generating 
probabilistic forecasting, as well as refining 
the ways to evaluate them. Murphy and 
Winkler (1984) provide a great summary of 
the important developments in the field for 
most of the 20th century. 

A density forecast is a forecast expressed 
as a probability distribution, instead of a 
single value, which would be considered a 
point forecast. Point forecasts are often a 
central feature of a probability distribution 
like the conditional mean or conditional 
median, which can be arrived at by optimizing 
the loss functions of respectively mean 
squared errors and mean absolute errors. 
Density forecasts can be expressed as 
the parameters that describe a probability 
distribution or as they are formally called the 
moments of the distribution. For many families 
of probability distributions like the normal 
skewed distribution, the skewed t-distribution, 
and the Sinh-Arcsinh distribution these 
include the mean (or location), the variance 
(or scale), the skewness and kurtosis (the 
last two are sometimes referred to as shape 
parameters). In the time series context, 
which is predominant in economics and 
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econometrics a density forecast over horizon 
h, is expressed as the forecasted moments of 
a probability distribution for each time within 
the horizon. 

Following Yanchev (2023), a density 
forecast can be defined in the following 
way.  is the information 
set available at the time of forecasting. Y is 
vector of the target variable or dependent 
variable. X is a vector of the predictors or the 
independent variables up to time T and XT+h  
is a vector of predictors available after time 
T in order to generate forecasts YT+h for a 
forecast horizon with length h. The predictive 
distribution  is what is referred to 
as a density forecast since it describes the 
distribution of the target variable Y for future 
values and is conditional on the information 
set that is available to the forecaster. 

Following Bassetti et al. (2019), a basic 
method for generating a density forecasting 
could be demonstrated by using a multiple 
linear regression model without an intercept 
for convenience:

	 (12)

where t = 1, …, T and .  
is a (m × 1) vector of coefficients,  is the 
variance of the error term ,  is a (m × 1) 
vector of covariates or predictors, which can 
include exogenous variables  and lagged 
values of the dependent variable, .  
A direct method to compute a density 
forecast is to assume the distribution for the 
error term and ignore parameter uncertainty. 
A usual assumption is the one of normality - 

. This would account for aleatoric 
uncertainty but ignore the epistemic one. The 
h-step ahead density forecast, conditional on 
the information available in the information set 
up to time T would be:

	 (13)

where  and  can be computed either 
analytically or numerically. In this case, the 
variance is fixed for a given estimation of 
the model. As Bassetti et al. (2019) point 
out there are several ways to account for 
parameter uncertainty in this case. Hansen 
(2006) offers a closed-form solution for a 
linear model. One could use a residual-based 
bootstrapping following Davidson and Hinkley 
(1997), which essentially resamples the 
residuals from the initial estimation. The main 
disadvantage of this method is that it treats 
the residuals as i.i.d., which is often not the 
case. In order to account for autocorrelation 
and heteroskedasticity in the residuals, the 
block wild bootstrapping method proposed by 
Yeh (1998) can be used. The basic premise 
behind block bootstrapping is to divide the 
time series into a number of blocks with a 
block length based on the lag length of the 
autocorrelation. The wild block bootstrapping 
proposed by Yeh (1998) allows the block 
length to vary instead of being fixed.

An alternative approach to accounting for 
parameter uncertainty involves using Bayesian 
inference (Dunson et al., 2007; Bassetti et al. 
2019). Based on Bayes theorem one could 
formulate prior distribution on the parameters, 
which multiplied by the likelihood results in 
the parameter posterior distributions. Based 
on the linear regression in equation (12), the 
objective of Bayesian inference would be to 
calculate the forecasted density:

	 (14)

where  is a ((m+1) × 1) vector 
of model parameters,   is the 
information set,  is the 
likelihood of the model for time T+h,  is 
the parameter marginal distribution conditional 
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on the information set. Depending on the 
choice of the parameter prior distribution, 
if the prior is conjugate then the parameter 
posterior distribution and the predictive 
distribution can be computed analytically. 
For non-conjugate prior, the posterior and 
predictive distributions need to be evaluated 
using numerical methods like Monte Carlo 
simulation methods. This approach would 
account for both aleatoric uncertainty and 
epistemic uncertainty. However, due to 
the initial setup of the model the variance 
parameter is fixed across time, which is not 
suitable for non-normal data-generating 
processes with skewness or heavy tails.

A seminal work in economics by Engle 
(1982) aimed to model and forecast volatility 
in the stock market. The autoregressive 
conditional heteroskedasticity (ARCH) 
model is explicitly modeling the conditional 
variances. The model expresses conditional 
variance as a linear function of squares of 
past observations and in this way generates 
forecasts with time-varying conditional 
variances. Bollerslev (1986) defined a 
generalized version of the ARCH model – 
the GARCH model. In its simplest form, the 
generalized model can be formulated in the 
following way in scalar notation:

	 (15)

	 (16)

where . This formulation 
assumes the time series are stationary with 
zero mean. However, this formulation of the 
conditional variance can be coupled with a 
variety of models for the conditional mean – 
a constant mean model as in the formulation 
above or any version of an ARIMA model. 
Since the seminal paper by Engle, there 
have been numerous extensions of the model 

(see Nelson, 1991; Higgins and Bera, 1992; 
Ding, Engle, and Granger, 1993; Glosten, 
Jagannathan, and Runkle, 1993;  Zakoian, 
1994). 

A significant benefit of the GARCH model 
is that the assumption of symmetric normality 
is not necessary. One could use a family of 
skewed distribution as well. However, its main 
setback is that fundamentally it is a univariate 
framework for modeling and forecasting. 
There have been extensions to accommodate 
exogenous regressors (see Sharma et al., 
1996; Engle and Patton, 2001), although the 
literature on such extensions is limited.

A different approach of modeling explicitly 
all moments of the distribution of a target 
variable is defined by the generalized additive 
models for location, scale, and shape - 
GAMLSS (Rigby and Stasinopoulos, 2005). In 
this model, the moments of a given distribution 
are modeled via separate equations, which 
are estimated jointly either via maximum 
likelihood estimation or Bayesian methods. 
Following the formulation of Stasinopoulos 
et al. (2018), the GAMLSS model can be 
described as follows in scalar notation:

	 (17)

	 (18)

	 (19)

	 (20)

assuming that the target follows a four-
parameter distribution ,  
and  are shape parameters associated with 
skewness and kurtosis. The  are 
sets of regressors or predictors,  stands for 
smoothing non-parametric functions applied 
to some of the explanatory variables. As the 
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authors point out the use of the smoothing 
function defines a data-driven approach 
to determine the relationship between the 
explanatory variables and the target, instead 
of enforcing a specific type of relationship.

There is a limited but growing body of 
applications of this type of model within the 
field of economics. Serinaldi (2011) uses 
it for short-term forecasting of electricity 
prices based on data from the USA and 
Italy. Gilchrist et al. (2011) used GAMLSS 
to forecast movie box-office revenues. Mikis 
et al. (2021) applied the GAMLSS to study 
the Greek-German bond yield spreads in a 
period up to the onset of the sovereign bond 
crisis in Europe. Ziel (2021) outlines the use 
of the GAMLSS in the M5 competition and 
specifically for the probabilistic forecasting of 
the sales of Walmart’s retail goods. Regis et 
al. (2022) model asset prices on the Brazilian 
stock market. Lastly, Umlauf et al. (2017) 
extend the GAMLSS and define the Bayesian 
version of the GAMLSS called the BAMLSS, 
which utilizes the Markov chain Monte Carlo 
(MCMC) simulation techniques.

Similar to the GAMLSS framework, 
one could model the moments of a target 
variable’s distribution using artificial neural 
networks. TensorFlow released a separate 
package dealing specifically with probabilistic 
forecasting, which according to Ziel (2021) is 
very similar to the core idea of the GAMLSS 
models. Since artificial neural networks allow 
for a flexible definition of inputs and outputs of 
the network, one could define a multi-output 
network, which outputs the moments of the 
distribution of the target variable, and network 
parameters are estimated using maximum 
likelihood. In this spirit,

Gal and Ghahramani (2016) propose a 
theoretical framework called Monte Carlo 
dropout (MC dropout) using a regularization 

technique called dropout (see Srivastava et 
al. 2014) as approximate Bayesian inference 
in Gaussian processes. This technique is 
generally used only during training to turn 
off neurons at random within a layer of the 
network, which is a strategy for preventing 
overfitting. However, the authors extend the 
use of dropout during inference, which can 
be used to generate a sample of predictions, 
hence its reference to Monte Carlo 
simulations. One could then fit a distribution 
to this sample and thus generate a density 
forecast. The simplicity of the idea and its 
implementation is tempting, although there 
have been researchers who criticize the claim 
that it approximates Bayesian inference (see 
Osband, 2016; Folgoc et al. 2021).

Salinas et al. (2019) present the DeepAR 
model which is an autoregressive recurrent 
neural network, which performs probabilistic 
forecasting and is specifically tailored to 
forecast a large number of time series. The 
model is estimated by applying gradient 
descent through time optimization (see 
Rumelhart, Hinton, Williams, 1986; Williams, 
Zipser, 1992) to maximize log-likelihood. The 
authors make an assumption for Gaussian 
likelihood for real-valued continuous target 
variables, and negative-binomial likelihood 
for positive count data. Other recent 
advancements in probabilistic forecasting 
using deep learning can be found in Wen et al. 
(2018), who use a mixed architecture between 
recurrent and convolutional layers to jointly 
estimate an arbitrary number of quantiles, 
Wang et al. (2019) combine a local method 
with a global neural network with the aim of 
forecasting a large number of time series, 
and Rangapuram et al. (2018) parametrize 
a linear state-space model, implemented via 
a Kalman filter in the context of a recurrent 
neural network architecture. Alexandrov et 
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al. (2020) in presenting their forecasting 
package for Python called GluonTS, mention 
implementations of the transformer (Vaswani 
et al., 2017) and wavenet (van den Oord et 
al., 2016) architectures, which have been very 
successful in natural language processing, 
to the task of time series probabilistic 
forecasting. 

Due to the fact that these innovations in 
deep learning have been relatively recent, 
the economics literature is yet to implement 
them at scale. Few studies can be found that 
implement any of the mentioned models or 
similar methods based on deep learning in 
the context of economic forecasting. He and 
Li (2018) apply a quantile regression neural 
network in combination with kernel density 
estimation to forecast wind power generation 
on data from Canada. Alghamdi et al. (2021) 
use deep learning and MC dropout to forecast 
Amazon and Apple stock prices. Barbaglia 
et al. (2021) use news information as an 
additional source of information and apply 
the DeepAR to model the spread between 
the 10-year and 3-month government treasury 
bills. Similarly, Consoli et al. (2022) extract 
information from news and use the DeepAR 
model to forecast the Spanish IBEX-35 stock 
market index. The last two studies use text data 
from news articles as well, which is expected 
to become a growing trend in economics. As 
Goulet Coulombe et al. (2022) point out the 
non-linearity which many machine learning 
methods allow for is where the main benefit 
is of applying such methods to economic 
modeling and forecasting. Therefore, 
one could only expect that their adoption 
would become gradually more widespread, 
especially as new tools come out to increase 
their explainability and transparency (see 
Bharghava and Gupta, 2022). 

Another approach for generating density 
forecasts, which is used in economics and 
finance relies on copula theory. Copulas allow 
for the decomposition of a joint probability 
distribution of a number of correlated 
variables into uncorrelated marginals and 
a function, which specifies the correlation 
between the variables – namely the copula. 
Patton (2013) provides an extensive overview 
of the methodology for forecasting using 
copula methods. More recent applications of 
these methods can be found in Bessa et al. 
(2011) on the topic of wind power forecasting 
and He et al. (2017) on the topic of power 
load density forecasting, although these 
methods are often used in conjunction with 
other traditional modeling techniques.

Lastly, a somewhat popular procedure for 
generating density forecasts often used in 
economics is finding a probability distribution, 
which is the best fit to a sample of pre-existing 
forecasts. Considering a panel of separate 
forecasts like the forecasts published by the 
SPF, one could fit a probability distribution 
function around the panel of forecasts (see 
Diebold et al. 1998; Gaglianone and Lima, 
2011). This method necessitates however that 
one is in possession of such a dataset, which is 
usually available only for important aggregate 
indicators like GDP, unemployment, and 
inflation. A similar exercise can be followed 
if one is in possession of multiple forecasts 
based on different methods or procedures 
for the same indicator (see Barnard, 1963, 
Roberts, 1965,  Bates and Granger, 1969). 
One could use the distribution of the individual 
forecasts as a density forecast. 

5. Evaluation of Density Forecasts

Forecast evaluation for point forecasting 
is somewhat straightforward. When evaluating 
the performance of a forecasting method, one 



121

Articles

is in possession of some ground truth values 
and the generated forecasts. See Gneiting 
(2011) for a discussion on the topic of the 
evaluation of point forecasts.  The evaluation 
of the performance relies on choosing an 
appropriate performance metric, which is 
usually based on the distance between the 
ground truth and the forecast. Such metrics 
are the mean squared errors or the mean 
absolute errors and while there are some 
variations of these, the main premise is the 
same.

With density forecasting the task of 
evaluating a forecast is harder, because 
one needs to compare forecast or predictive 
densities with a single ground truth value. 
Therefore, numerous studies have been 
focusing on developing and refining methods 
for density forecast evaluation. As Gneiting 
et al. (2007) define two separate aspects in 
which density forecast needs to be evaluated –  
calibration and sharpness. Calibration refers to 
the statistical consistency between the density 
forecasts and the observed, while sharpness 
is understood as the concentration of the 
density forecasts. A higher concentration 
of the density forecasts is better, subject to 
calibration, as more concentrated forecasts 
imply higher precision, lower forecast 
uncertainty, and a higher degree of model 
confidence. In an extreme example, the 
“sharpest” possible forecast would be a 
deterministic forecast, where the predictive 
distribution assigns the total likelihood to a 
single value and no likelihood to any other 
value. Therefore, a more concentrated 
forecast is desirable, but only if calibration is 
fulfilled as well. As Mitchell and Wallis (2011) 
point out, sharpness is a property of the 
predictive distributions alone, while calibration 
is a property of the forecast-observation pairs.

Following Gneiting et al. (2007), a basic 
theoretical framework is laid out in order to 
define the context of the task of evaluating 
density forecasts. At time steps t = 1,…,T 
there is a  distribution Gt, which we think of 
as the true data-generating process, and the 
forecaster generates a probabilistic forecast 
in the form of a predictive CDF Ft. The ground 
truth outcome xt is a random number with 
distribution Gt. Gneiting et al. (2007) refer 
to the distribution of the data-generating 
process as being “picked by nature” and 
therefore it is assumed that the forecaster’s 
set of information is at most that of nature. 
Therefore, if:

Ft = Gt	 (21)

for all time steps then Ft is an ideal 
forecast. The true distribution Gt is 
hypothetical and remains unknown. Dawid 
(1984) and Diebold et al. (1998) proposed the 
use of the probability integral transform (PIT):

pt = Ft(xt)	 (22)

for making this comparison. If the 
forecasts are ideal and Ft is continuous, 
then pt has a uniform distribution. This can 
be examined visually via a histogram of 
the PIT or a uniformity test. Gneitling et al. 
(2007) summarize how one should interpret 
deviations from uniformity in the histogram. 
Concave-down-shaped (hump-shaped) 
histograms indicate overdispersed predictive 
distributions with greater dispersion on 
average. This would be equivalent to forecasts 
lacking enough sharpness. Concave-up-
shaped (U-shaped) histograms often point to 
predictive distributions that are excessively 
concentrated or narrow, which means they 
are too sharp. Triangle-shaped histograms, 
which are skewed in one direction or the 
other, indicate biased predictive distributions.
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In terms of formal statistical testing, Smith 
(1985) proposes using the inverse CDF 
(quantile function) on the PIT values and test 
for normality, since there are a number of 
established tests for normality. If  
and  then . On the other 
hand, the goodness of fit tests like Pearson’s 
chi-squared test can assess how well the 
PIT histogram fits a uniform distribution 
using the pt or the transformed zt values. 
Other suitable tests include the Kolmogorov-
Smirnov (KS) test, and its Anderson-Darling 
(AD) modification (Mitchell and Wallis, 2011).

Thus, the uniformity of the PIT is a 
necessary condition for the forecaster to 
be ideal, and checks for its uniformity have 
become a fundamental forecast evaluation 
technique. However, Hamill (2001) presented 
an example of uniformly distributed PIT values 
derived from forecasts where every single 
forecast is biased. The example aimed to 
show that the uniformity of the PIT values is 
a necessary, but not a sufficient condition 
for the forecaster to be ideal Gneiting et al. 
(2007). This would imply that checking for 
uniformity in the PIT does not allow one to 
compare between an ideal forecaster and 
competitor forecasters, since all of them 
can exhibit necessary uniformity. Mitchell 
and Wallis (2011) argue that this example 
is unrealistic and misleading to the existing 
literature on evaluating density forecasts.

Scoring rules assign numerical scores to 
probabilistic forecasts based on the predictive 
distribution and the realization of the forecasted 
variable. They conveniently summarize the 
predictive performance, when the quality of 
a probabilistic forecast is evaluated. They 
address both calibration and sharpness 
(Gneitling et al., 2007). Assuming that a score  
s(F,x) is a penalty that the forecaster would 
like to minimize, a score is considered proper 

if its value is minimized for an observation x 
drawn from G when F = G. A strictly proper 
score would be one with a unique minimum 
(Gneitling et al., 2007). According to Mitchell 
and Wallis (2011), sharpness became an 
established term in the forecasting literature 
with the decomposition of the Brier score 
(Brier, 1950) into two components by Sanders 
(1963) - one measuring “validity” and the 
other “sharpness”. 

The logarithmic score is the negative of 
the logarithm of the PDF of the predictive 
density evaluated at the observation (Good, 
1952; Bernardo, 1979). The logarithmic score 
is proper according to the definition above 
(Roulston and Smith, 2002), but according to 
Selten (1998) and Gneiting and Raftery (2006), 
it lacks robustness. According to Selten 
(1998), sometimes it can exhibit excessive 
sensitivity with respect to differences between 
very small probabilities, while in other cases, 
it would be not sensitive enough with respect 
to the distance between the truth and the 
prediction.

	 (23)

One could consider the logarithmic score 
as the logarithm of the predictive likelihood, 
and thus two forecasts can be compared 
using the Bayes factor or the difference 
in their logarithmic scores (see Geweke 
and Amisano, 2010). An alternative scoring 
rule, which is often used in literature is the 
continuous ranked probability score (CRPS), 
which is directly defined in terms of the 
predictive CDF:

	 (24)

Where 1() is the indicator function and 
according to Gneiting et al. (2007) is a more 
robust alternative to the logarithmic score. 
Gneiting and Raftery (2006) propose an 
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alternative representation, which is useful 
when dealing with forecast ensembles and 
shows that the CRPS generalizes the absolute 
error. According to Gneiting et al. (2007), 
the CRPS is a proper score and competing 
forecasts can be ranked based on their 
average:

	 (25)

where

	 (26)

denotes the Brier score (1950) for 
probabilistic forecasts of the binary event at the 
threshold value . Like all proper scoring 
rules for binary probability forecasts (Gneiting 
et al., 2007), the Brier score allows for the 
distinction of a calibration and sharpness 
components (see Murphy, 1972; DeGroot and 
Fienberg, 1983; Dawid, 1986). A discussion of 
calibration-sharpness decomposition of the 
CRPS can be found in Candille and Talagrand 
(2005). Both the logarithmic score and the 
CRPS can be used for comparing probabilistic 
forecasts, but the latter has some advantages 
in terms of robustness and decomposition into 
calibration and sharpness.

Several studies employ an alternative 
method for comparing probabilistic and 
quantile forecasts called the pinball loss 
(see Maciejowska et al., 2016; Abramova and 
Bunn, 2020; Berrisch and Ziel, 2022). The 
pinball loss is essentially equivalent to the 
tilted loss function, also called the quantile 
loss function. The pinball loss function is 
always positive and results in greater values 
the further away the estimate quantile is 
from the observation, one is comparing the 

forecast against (Abramova and Bunn, 2020). 
For the case of a predictive density

	 (27)

If one is evaluating a full predictive density, 
one could use the inverse CDF to generate the 
continuum of quantiles on the basis of which 
to calculate the pinball loss. The generated 
quantiles are considered the best fit when the 
values of the pinball loss are the lowest. This 
could similarly to the PIT histogram point out 
deficiencies related to bias, overdispersion, or 
too narrow predictive distributions, but in the 
context of comparing between forecasts.

Lastly, it is worth evaluating the accuracy 
of the central features of the predictive 
distributions like the mean and median. This 
can be performed by treating these central 
features like point forecasts. Therefore, 
traditional metrics for point-forecast accuracy 
like MSE, RMSE, or MAE are valid in this 
respect.

6. Conclusion

A clear trend towards probabilistic 
forecasting is observed in the scientific 
literature, due to the evident advantages over 
point-forecasts discussed as early as the late 
60s of the 20th century (Anscombe, 1968), 
but even more often after 2000 (Granger and 
Pesaran, 2000, Tay and Wallis, 2000). Many 
studies in economics and even in machine 
learning still focus on point forecasting. On 
the other hand, many researchers as well as 
institutions like central banks have already 
recognized the advantage of using density 
forecasts. However, the practical tools for 
generating and evaluating density forecasts 
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are still not as accessible and established 
as the instruments now widely used for point 
forecasting.

In the economics literature, the prevailing 
approaches to probabilistic forecasting 
include generating intervals for traditional 
point forecasts, quantile regression, Bayesian 
methods, and various modifications of the 
GARCH model. The use of machine learning 
and deep learning methods, copula methods, 
and other mixed methods like quantile-based 
density forecasting seems to be still a road 
less traveled. Two distinct sub-fields where 
novel methods are often applied are energy 
and financial economics, where it seems the 
demand for ever more accurate forecasting 
drives innovation.
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